
Class 10: Equality

6.102 — Software Construction
Spring 2024

1 / 25

Exercise: yellkey.com/probably

Nanoquiz: yellkey.com/easy

Warmup
Start your exercise collaboration

Look at Point and Stroke …

Draw a snapshot diagram for:

const seg = new Stroke(5, 10, 20, 15, Color.BLACK);

… and then there will be a couple clicker questions.

2 / 25

Exercise: yellkey.com/probably

Nanoquiz: yellkey.com/easy

Warmup
Start your exercise collaboration

Look at Point and Stroke …

Draw a snapshot diagram for:

const seg = new Stroke(5, 10, 20, 15, Color.BLACK);

… and then there will be a couple clicker questions.

How many arrows are in your snapshot diagram?

3 / 25

Nanoquiz
This quiz is just for you and your own brain:

closed-book, closed-notes
nothing else on your screen

Lower your laptop screen when you’re done

 yellkey.com/easy

4 / 25

Which of these implementations of equalValue() are correct?

/** Immutable set of characters */
export class CharSet {
 private readonly s: string;
 ...
 public equalValue(that: CharSet): boolean {

 (A) return this.s === that.s;

 (B) return this.s.equalValue(that.s);

 (C) return this.toString() === that.toString();

-or-(D) // none of them

 }
 public toString(): string {
 ... // correct implementation of toString() spec
 }
}

7 / 25

Which of these implementations of equalValue() are correct?

/** Immutable set of characters */
export class CharSet {
 private readonly s: string;
 // AF(s) = { c | c is in s }
 // RI(s) = true
 ...
 public equalValue(that: CharSet): boolean {

 (A) return this.s === that.s;

 (B) return this.s.equalValue(that.s);

 (C) return this.toString() === that.toString();

-or-(D) // none of them
 }
 public toString(): string {
 ... // correct implementation of toString() spec
 }
}

8 / 25

 yellkey.com/probably

Equality
Implement equalValue() for Point
→ pass the tests for Point.equalValue in equalsTest.ts

9 / 25

 yellkey.com/probably

Equality
Implement equalValue() for Point
→ pass the tests for Point.equalValue in equalsTest.ts
…and for Stroke

10 / 25

 yellkey.com/probably

Equality
Implement equalValue() for Point
→ pass the tests for Point.equalValue in equalsTest.ts
…and for Stroke
…and for LineSegment

11 / 25

 yellkey.com/probably

Equality
Implement equalValue() for Point
→ pass the tests for Point.equalValue in equalsTest.ts
…and for Stroke
…and for LineSegment
Where can you change your equalValue() implementations to use
observers rather than rep fields?

12 / 25

Which of these implementations of Stroke.equalValue() are
both correct and good?

(A) return this.start.equalValue(that.start)
 && this. end .equalValue(that.end)
 && this.color === that.color;

(B) return this.start.x === that.start.x
 && this.start.y === that.start.y
 && this. end .x === that. end .x
 && this. end .y === that. end .y
 && this.color === that.color;

(C) if (this.start.equalValue(that.start)) {
 if (this.end.equalValue(that.end)) {
 if (this.color === that.color) {
 return true; } } }
 return false;

13 / 25

Which of these implementations of LineSegment.equalValue() are
both correct and good?

(A) return this.p1.equalValue(that.p1)
 && this.p2.equalValue(that.p2);

(B) return (this.p1.equalValue(that.p1)
 && this.p2.equalValue(that.p2))
 || (this.p1.equalValue(that.p2)
 && this.p2.equalValue(that.p1));

(C) for (const p of this.endpoints()) {
 if (! that.endpoints().includes(p)) {
 return false; } }
 return true;

(D) return this.length() === that.length();

(E) return this.toString() === that.toString();
14 / 25

Which of these implementations of LineSegment.equalValue() are
both correct and good?

(A) return this.p1.equalValue(that.p1)
 && this.p2.equalValue(that.p2);

(B) return (this.p1.equalValue(that.p1)
 && this.p2.equalValue(that.p2))
 || (this.p1.equalValue(that.p2)
 && this.p2.equalValue(that.p1));

(C) for (const p of this.endpoints()) {
 if (! that.endpoints().) { // watch out
 return false; } }
 return true;

(D) return this.length() === that.length();

(E) return this.toString() === that.toString();

includes(p)

15 / 25

Hashability in TS/JS vs. Python
A hashable type can be safely stored in a set and used as a map/dict key

Are these types hashable?

16 / 25

Hashability in TS/JS vs. Python
A hashable type can be safely stored in a set and used as a map/dict key

Are these types hashable?

// number in TS/JS
const x = 7
const s = new Set<number>()

s.add(x)
s.has(x)
s.has(7)

int in Python
x = 7
s = set()

s.add(x)
x in s
7 in s

17 / 25

Hashability in TS/JS vs. Python
A hashable type can be safely stored in a set and used as a map/dict key

Are these types hashable?

// Array in TS/JS
const x: Array<number> = [1,2]
const s = new Set<Array<number>>()

s.add(x)
s.has(x)
s.has([1,2])

x.push(3)
s.has(x)
s.has([1,2,3])

list in Python
x = [1,2]
s = set()

s.add(x)
x in s
[1,2] in s

x.append(3)
x in s
[1,2,3] in s

18 / 25

Hashability in TS/JS vs. Python
A hashable type can be safely stored in a set and used as a map/dict key

Are these types hashable?

// Point (from today and ps0)
const x: Point = new Point(3,4)
const s = new Set<Point>()

s.add(x)
s.has(x)
s.has(new Point(3,4))

tuple in Python
x = (3,4)
s = set()

s.add(x)
x in s
(3,4) in s

19 / 25

Hashability in TS/JS vs. Python
A hashable type can be safely stored in a set and used as a map/dict key

Are these types hashable?

// Flashcard (from ps1)
const x: Flashcard = Flashcard.make("yes","oui")
const s = new Set<Flashcard>()

s.add(x)
s.has(x)
s.has(Flashcard.make("yes","oui"))

tuple in Python
x = ("yes","oui")
s = set()

s.add(x)
x in s
("yes","oui") in s

20 / 25

Hashability
/** Mutable line art. */
export class LineArt {
 ...
 public add(stroke: Stroke): void { ... }
 public remove(stroke: Stroke): void { ... }
 public equalValue(that: LineArt): boolean { ... }
 ...
}

21 / 25

Hashability
/** Mutable line art. */
export class LineArt {
 ...
 public add(stroke: Stroke): void { ... }
 public remove(stroke: Stroke): void { ... }
 public equalValue(that: LineArt): boolean { ... }
 ...
}

If we are a client of mutable LineArt , which are likely to work as expected?

(A)
const userPictures: Map<string, LineArt> // each user has one picture
(B)
const pictureAuthors: Map<LineArt, string> // each picture has one author
(C)
const strokeCounts: Map<LineArt, number> // when we edit, increment count

22 / 25

Hashability
/** Mutable line art. */
export class LineArt {
 ...
 public add(stroke: Stroke): void { ... }
 public remove(stroke: Stroke): void { ... }
 public equalValue(that: LineArt): boolean { ... }
 ...
}

If we are a client of mutable LineArt , which are likely to work as expected?

(A)
const userPictures: Map<string, LineArt> // each user has one picture
(B)
const pictureAuthors: Map<LineArt, string> // each picture has one author
(C)
const strokeCounts: Map<LineArt, number> // when we edit, increment count

Mutable keys are compared with === . OK — just remember they can be mutated! 23 / 25

Hashability
/** Mutable line art. */
export class LineArt {
 ...
 public add(stroke: Stroke): void { ... }
 public remove(stroke: Stroke): void { ... }
 public equalValue(that: LineArt): boolean { ... }
 ...
}

If we implement LineArt using our immutable types, which are likely to work as
expected?

(A)
private readonly strokes: Set<Stroke> // unique strokes
(B)
private readonly visibility: Map<Stroke, boolean> // toggle visibility
(C)
private readonly layers: Map<number, Array<Stroke>> // multiple layers

24 / 25

Hashability
/** Mutable line art. */
export class LineArt {
 ...
 public add(stroke: Stroke): void { ... }
 public remove(stroke: Stroke): void { ... }
 public equalValue(that: LineArt): boolean { ... }
 ...
}

If we implement LineArt using our immutable types, which are likely to work as
expected?

(A)
private readonly strokes: Set<Stroke> // unique strokes
(B)
private readonly visibility: Map<Stroke, boolean> // toggle visibility
(C)
private readonly layers: Map<number, Array<Stroke>> // multiple layers

Set / Map use === to compare, but that’s wrong for immutable types like Stroke
25 / 25

