
Class 11: Recursive Data Types

6.102 — Software Construction
Spring 2024

1 / 41

Exercise: yellkey.com/unit

Nanoquiz: yellkey.com/coverGet started
In Team.ts , �ll in all TODO in immutable class Team :

abstraction function
rep invariant and checkRep()
rep exposure safety
missing method at bottom

2 / 41

Nanoquiz
This quiz is just for you and your own brain:

closed-book, closed-notes
nothing else on your screen

Lower your laptop screen when you’re done

 yellkey.com/cover

3 / 41

 yellkey.com/unit

Single-elimination tournaments
We want to construct (recursive) single-elimination tournaments:

 bracketize : Array< Team> → Bracket

5 / 41

 yellkey.com/unit

Single-elimination tournaments
We want to construct (recursive) single-elimination tournaments:

 bracketize : Array< Team> → Bracket

To decide a winner for a tournament, we need to know how good each team is right now:

 winner: Bracket × → Team ??? ??? = some way to describe who wins vs. who

6 / 41

 yellkey.com/unit

Single-elimination tournaments
We want to construct (recursive) single-elimination tournaments:

 bracketize : Array< Team> → Bracket

To decide a winner for a tournament, we need to know how good each team is right now:

 winner: Bracket × → Team ??? ??? = some way to describe who wins vs. who

TODO-1: Write specs for bracketize and winner in Bracket.ts,
TODO-2: and test winner in BracketTest.ts (complete just the two provided tests).

7 / 41

 yellkey.com/unit

Single-elimination tournaments
We want to construct (recursive) single-elimination tournaments:

 bracketize : Array< Team> → Bracket

To decide a winner for a tournament, we need to know how good each team is right now:

 winner: Bracket × → Team

TODO-3: Design an immutable, recursive Bracket ADT.
 Write down the recursive data type de�nition in a comment in Bracket.ts.
TODO-4: then implement it with new classes at bottom of Bracket.ts

??? ??? = some way to describe who wins vs. who

TODO-1: Write specs for bracketize and winner in Bracket.ts,
TODO-2: and test winner in BracketTest.ts (complete just the two provided tests).

8 / 41

 yellkey.com/unit

Single-elimination tournaments
We want to construct (recursive) single-elimination tournaments:

 bracketize : Array< Team> → Bracket

To decide a winner for a tournament, we need to know how good each team is right now:

 winner: Bracket × → Team

TODO-3: Design an immutable, recursive Bracket ADT.
 Write down the recursive data type de�nition in a comment in Bracket.ts.
TODO-4: then implement it with new classes at bottom of Bracket.ts

TODO-5: Write the recursive functional de�nition of winner in a comment,
TODO-6: then implement it with code in the concrete variants.

??? ??? = some way to describe who wins vs. who

TODO-1: Write specs for bracketize and winner in Bracket.ts,
TODO-2: and test winner in BracketTest.ts (complete just the two provided tests).

9 / 41

winner: Bracket × ??? → Team ??? = some way to describe who wins vs. who

Type for ??? argument?

Map<Team, number>

10 / 41

winner: Bracket × ??? → Team ??? = some way to describe who wins vs. who

Type for ??? argument?

Map<Team, number> aaah! Map<string, number>

11 / 41

winner: Bracket × ??? → Team ??? = some way to describe who wins vs. who

Type for ??? argument?

Map<Team, number> aaah! Map<string, number>

Implement as a…

A. static function
B. instance method

12 / 41

winner: Bracket × ??? → Team ??? = some way to describe who wins vs. who

Type for ??? argument?

Map<Team, number> aaah! Map<string, number>

Implement as a…

A. static function
B. instance method

Implementation code in Bracket ? Y / N

13 / 41

winner: Bracket × ??? → Team ??? = some way to describe who wins vs. who

Type for ??? argument?

Map<Team, number> aaah! Map<string, number>

Implement as a…

A. static function
B. instance method

Implementation code in Bracket ? Y / No

declare in interface
implement in concrete variants

14 / 41

winner: Bracket × Map< string,number> → Team

/**
 * @param strength strengths of the teams in this tournament by name
 *
 * @returns winner of this tournament, the team that in every
 * match of the tournament has higher strength
 */
public winner(strength: Map<string,number>): Team

Improve the precondition

15 / 41

winner: Bracket × Map< string,number> → Team

/**
 * @param strength strengths of the teams in this tournament by name
 *
 * @returns winner of this tournament, the team that in every
 * match of the tournament has higher strength
 */
public winner(strength: Map<string,number>): Team

Improve the precondition

Now improve the postcondition

requires strength.has(t.name) for every Team t in this

16 / 41

winner: Bracket × Map< string,number> → Team

/**
 * @param strength strengths of the teams in this tournament by name
 *
 * @returns winner of this tournament, a team that in every
 * match of the tournament has highest strength
 */
public winner(strength: Map<string,number>): Team

Improve the precondition

Now improve the postcondition

requires strength.has(t.name) for every Team t in this
the
higher

17 / 41

winner: Bracket × ??? → Team ??? = some way to describe who wins vs. who

Functional approach:

Team → number

Team × Team → Team

18 / 41

bracketize : Array< Team> → Bracket

/**
 * @param teams nonempty array of the unique teams in the tournament
 * @returns tournament of the given teams
 */
export function bracketize(teams: Array<Team>): Bracket

Strong enough to implement the two provided winner test cases? Y / N

19 / 41

bracketize : Array< Team> → Bracket

/**
 * @param teams nonempty array of the unique teams in the tournament
 * @returns tournament of the given teams
 */
export function bracketize(teams: Array<Team>): Bracket

Strong enough to implement the two provided winner test cases? Y / N

Yes, “the unique teams in the tournament” is enough for 1- and 2-team tournaments

20 / 41

bracketize : Array< Team> → Bracket

/**
 * @param teams nonempty array of the unique teams in the tournament
 * @returns tournament where teams[i-1] plays teams[i] for odd i less
 * than teams.size()
 */
export function bracketize(teams: Array<Team>): Bracket

Fully determined? Y / N

21 / 41

bracketize : Array< Team> → Bracket

/**
 * @param teams nonempty array of the unique teams in the tournament
 * @returns tournament where teams[i-1] plays teams[i] for odd i less
 * than teams.size()
 */
export function bracketize(teams: Array<Team>): Bracket

Fully determined? Y / Not even close

22 / 41

bracketize : Array< Team> → Bracket

/**
 * @param teams nonempty array of the unique teams in the tournament
 * @returns given 1 team, tournament of only that team; otherwise,
 * given n > 1 teams, tournament in which the winner from a
 * tournament among the first ceil(n/2) plays the winner from a
 * tournament among the last floor(n/2)
 */
export function bracketize(teams: Array< Team>): Bracket

Make this spec fully determined

23 / 41

bracketize : Array< Team> → Bracket

/**
 * @param teams nonempty array of the unique teams in the tournament
 * @returns given 1 team, tournament of only that team; otherwise,
 * given n > 1 teams, tournament in which the winner from a
 * tournament among the first ceil(n/2) plays the winner from a
 * tournament among the last floor(n/2), where those tournaments
 * are defined according to the same rule */
export function bracketize(teams: Array< Team>): Bracket

Make this spec fully determined

24 / 41

 yellkey.com/unit

Single-elimination tournaments
We want to construct (recursive) single-elimination tournaments:

 bracketize : Array< Team> → Bracket

To decide a winner for a tournament, we need to know how good each team is right now:

 winner: Bracket × → Team

TODO-1: Write specs for bracketize and winner in Bracket.ts,
TODO-2: and test winner in BracketTest.ts (complete just the two provided tests).

Map< string,number>

TODO-3: Design an immutable, recursive Bracket ADT.
 Write down the recursive data type de�nition in a comment in Bracket.ts.
TODO-4: then implement it with new classes at bottom of Bracket.ts

25 / 41

 yellkey.com/unit

Single-elimination tournaments
We want to construct (recursive) single-elimination tournaments:

 bracketize : Array< Team> → Bracket

To decide a winner for a tournament, we need to know how good each team is right now:

 winner: Bracket × Map< string,number> → Team

TODO-1: Write specs for bracketize and winner in Bracket.ts,
TODO-2: and test winner in BracketTest.ts (complete just the two provided tests).

TODO-3: Design an immutable, recursive Bracket ADT.
 Write down the recursive data type de�nition in a comment in Bracket.ts.
TODO-4: then implement it with new classes at bottom of Bracket.ts

Which �rst? A. choose rep B. write tests C. choose ops

26 / 41

 yellkey.com/unit

Single-elimination tournaments
We want to construct (recursive) single-elimination tournaments:

 bracketize : Array< Team> → Bracket

To decide a winner for a tournament, we need to know how good each team is right now:

 winner: Bracket × Map< string,number> → Team

TODO-1: Write specs for bracketize and winner in Bracket.ts,
TODO-2: and test winner in BracketTest.ts (complete just the two provided tests).

TODO-3: Design an immutable, recursive Bracket ADT.
 Write down the recursive data type de�nition in a comment in Bracket.ts.
TODO-4: then implement it with new classes at bottom of Bracket.ts

Which �rst? A. choose rep B. write tests C.

And which one is “write down the recursive data type de�nition?”

choose ops

27 / 41

 yellkey.com/unit

Single-elimination tournaments
We want to construct (recursive) single-elimination tournaments:

 bracketize : Array< Team> → Bracket

To decide a winner for a tournament, we need to know how good each team is right now:

 winner: Bracket × Map< string,number> → Team

TODO-1: Write specs for bracketize and winner in Bracket.ts,
TODO-2: and test winner in BracketTest.ts (complete just the two provided tests).

TODO-3: Design an immutable, recursive Bracket ADT.
 Write down the recursive data type de�nition in a comment in Bracket.ts.
TODO-4: then implement it with new classes at bottom of Bracket.ts

Which �rst? A. B. write tests C. choose ops

And which one is “write down the recursive data type de�nition?”

choose rep

28 / 41

 yellkey.com/unit

Single-elimination tournaments
We want to construct (recursive) single-elimination tournaments:

 bracketize : Array< Team> → Bracket

To decide a winner for a tournament, we need to know how good each team is right now:

 winner: Bracket × Map< string,number> → Team

TODO-1: Write specs for bracketize and winner in Bracket.ts,
TODO-2: and test winner in BracketTest.ts (complete just the two provided tests).

TODO-5: Write the recursive functional de�nition of winner in a comment,
TODO-6: then implement it with code in the concrete variants.

TODO-3: Design an immutable, recursive Bracket ADT.
 Write down the recursive data type de�nition in a comment in Bracket.ts.
TODO-4: then implement it with new classes at bottom of Bracket.ts

29 / 41

Single-elimination tournaments
Bracket = OneTeam(t: Team) + Game(p1, p2: Team)

30 / 41

Single-elimination tournaments
Bracket = OneTeam(t: Team) + Game(p1, p2: Team)

Bracket = Empty + Game(b1,b2: Bracket)

31 / 41

Single-elimination tournaments
Bracket = OneTeam(t: Team) + Game(p1, p2: Team)

Bracket = Empty + Game(b1,b2: Bracket)

Bracket = unde ned + Game(b1,b2: Bracket)

32 / 41

Single-elimination tournaments
Bracket = OneTeam(t: Team) + Game(p1, p2: Team)

Bracket = Empty + Game(b1,b2: Bracket)

Bracket = unde ned + Game(b1,b2: Bracket)

Bracket = Single(t: Team) + Game(b1,b2: Bracket)

33 / 41

Single-elimination tournaments
Bracket = OneTeam(t: Team) + Game(p1, p2: Team)

Bracket = Empty + Game(b1,b2: Bracket)

Bracket = unde ned + Game(b1,b2: Bracket)

Bracket = Single(t: Team) + Game(b1,b2: Bracket)

Bracket = Team(home,name: string) + Game(b1,b2: Bracket)

34 / 41

Single-elimination tournaments
We have one way to make a tournament right now, bracketize : Array< Team> → Bracket
Clients have asked for more ways to make tournaments:

/**
 * @param team the only team in the tournament
 * @returns tournament with only the given team
 */
single(team: Team): Bracket

What kind of operation is this?

35 / 41

Single-elimination tournaments
We have one way to make a tournament right now, bracketize : Array< Team> → Bracket
Clients have asked for more ways to make tournaments:

/**
 * @param team the only team in the tournament
 * @returns tournament with only the given team
 */
single(team: Team): Bracket

What kind of operation is this? creator

/**
 * TODO
 */
match(???): Bracket

What should the args be?

36 / 41

Single-elimination tournaments
We have one way to make a tournament right now, bracketize : Array< Team> → Bracket
Clients have asked for more ways to make tournaments:

/**
 * @param team the only team in the tournament
 * @returns tournament with only the given team
 */
single(team: Team): Bracket

What kind of operation is this? creator

/**
 * TODO
 */
match(???): Bracket

What should the args be? b1: Bracket, b2: Bracket (spec: winner of b1 plays winner of b2)

And what kind of operation is that?
37 / 41

Single-elimination tournaments
We have one way to make a tournament right now, bracketize : Array< Team> → Bracket
Clients have asked for more ways to make tournaments:

/**
 * @param team the only team in the tournament
 * @returns tournament with only the given team
 */
single(team: Team): Bracket

What kind of operation is this? creator

/**
 * TODO
 */
match(???): Bracket

What should the args be? b1: Bracket, b2: Bracket (spec: winner of b1 plays winner of b2)

And what kind of operation is that? producer
Wait, does this create rep exposure, or break rep independence? Y / N 38 / 41

Single-elimination tournaments
We have one way to make a tournament right now, bracketize : Array< Team> → Bracket
Clients have asked for more ways to make tournaments:

/**
 * @param team the only team in the tournament
 * @returns tournament with only the given team
 */
single(team: Team): Bracket

What kind of operation is this? creator

/**
 * TODO
 */
match(???): Bracket

What should the args be? b1: Bracket, b2: Bracket (spec: winner of b1 plays winner of b2)

And what kind of operation is that? producer
Wait, does this create rep exposure, or break rep independence? Y / Nope 39 / 41

 yellkey.com/unit

Single-elimination tournaments
We want to construct (recursive) single-elimination tournaments:

 bracketize : Array< Team> → Bracket

To decide a winner for a tournament, we need to know how good each team is right now:

 winner: Bracket × Map< string,number> → Team

TODO-1: Write specs for bracketize and winner in Bracket.ts,
TODO-2: and test winner in BracketTest.ts (complete just the two provided tests).

TODO-3: Design an immutable, recursive Bracket ADT.

TODO-4: then implement it with new classes at bottom of Bracket.ts

Bracket = Single(t: Team) + Game(b1,b2: Bracket)

TODO-5: Write the recursive functional de�nition of winner in a comment,
TODO-6: then implement it with code in the concrete variants.

40 / 41

Single-elimination tournaments
Equality

41 / 41

