
Class 12: Grammars & Parsing

6.102 — Software Construction
Spring 2024

1 / 12

Exercise: yellkey.com/TODO

Nanoquiz: yellkey.com/TODO
A grammar for arithmetic
expressions
Open warmupTest.ts and run it with npm run warmupTest

In the output, look for and compare:

the parse tree
relate to the grammar at the top of parser.ts

the abstract syntax tree (AST)
relate to the classes Plus and Constant in IntegerExpression.ts

Fill in the TODOs in warmupTest with input strings that produce different results:

same AST but different parse tree
same AST leaves (54, 2, 89 in that order) and expression value,
but different parse tree and different AST
same AST leaves and value, but parse tree with fewest possible primary nodes

2 / 12

Nanoquiz
This quiz is just for you and your own brain:

closed-book, closed-notes
nothing else on your screen

Lower your laptop screen when you’re done

 yellkey.com/TODO

3 / 12

 yellkey.com/TODO
Multiplication
Today’s starting code can handle addition of integers: 5+(2+3)

We want to support multiplication too: 5*(2+3*4)

In the grammar at the top of parser.ts :

Create a product nonterminal
Don’t forget to modify the enum IntegerGrammar

sum should now be a sum of products
product should be a product of primaries
npm run grammarTest ; does it display the right parse tree for 5*(2+3*4) ?

5 / 12

What does this grammar do with the input string 1+2*3 ?

@skip whitespace {
 expr ::= sum | product;
 sum ::= primary ('+' primary)*;
 product ::= primary ('*' primary)*;
 primary ::= constant | '(' sum ')' | '(' product ')';
}
constant ::= [0-9]+;
whitespace ::= [\t\r\n]+;

Pick one:

good parse tree
wrong parse tree (doesn’t respect PEMDAS)
parse error (grammar doesn’t match entire string)

6 / 12

What does this grammar do with the input string 1+2*3 ?

@skip whitespace {
 expr ::= primary ([+*] primary)*;
 primary ::= constant | '(' expr ')';
}
constant ::= [0-9]+;
whitespace ::= [\t\r\n]+;

Pick one:

good parse tree
wrong parse tree (doesn’t respect PEMDAS)
parse error (grammar doesn’t match entire string)

7 / 12

What does this grammar do with the input string 1+2*3 ?

@skip whitespace {
 expr ::= sum;
 sum ::= product ('+' product)*;
 product ::= primary ('*' primary)*;
 primary ::= constant | '(' sum ')';
}
constant ::= [0-9]+;
whitespace ::= [\t\r\n]+;

Pick one:

good parse tree
wrong parse tree (doesn’t respect PEMDAS)
parse error (grammar doesn’t match entire string)

8 / 12

 yellkey.com/TODO
Multiplication
Today’s starting code can handle addition of integers: 5+(2+3)

We want to support multiplication too: 5*(2+3*4)

In the grammar at the top of parser.ts :

Create a product nonterminal
Don’t forget to modify the enum IntegerGrammar

sum should now be a sum of products
product should be a product of primaries
npm run grammarTest ; does it display the right parse tree for 5*(2+3*4) ?

Now update makeAbstractSyntaxTree in parser.ts :

the if ... else if ... needs a case for Product
npm run parserTest to check the answer for 5*(2+3*4)

9 / 12

@skip whitespace {
 expr ::= sum;
 sum ::= product ('+' product)*;
 product ::= primary ('*' primary)*;
 primary ::= constant | '(' sum ')';
}
constant ::= [0-9]+;
whitespace ::= [\t\r\n]+;

Which of these would have to change (pick all that apply):
 grammar makeAST() AST data type

to support this new feature:

variables

5x + 3y 10 / 12

@skip whitespace {
 expr ::= sum;
 sum ::= product ('+' product)*;
 product ::= primary ('*' primary)*;
 primary ::= constant | '(' sum ')';
}
constant ::= [0-9]+;
whitespace ::= [\t\r\n]+;

Which of these would have to change (pick all that apply):
 grammar makeAST() AST data type

to support this new feature:

curly braces (with same meaning as parentheses)

{5+3}*6 11 / 12

@skip whitespace {
 expr ::= sum;
 sum ::= product ('+' product)*;
 product ::= primary ('*' primary)*;
 primary ::= constant | '(' sum ')';
}
constant ::= [0-9]+;
whitespace ::= [\t\r\n]+;

Which of these would have to change (pick all that apply):
 grammar makeAST() AST data type

to support this new feature:

negative numbers (but not subtraction)

5 + -3 12 / 12

