Class 12: Grammars & Parsing

6.102 — Software Construction
Spring 2024

1/12

A grammar for' arith metic Exercise:)< yellkey.com/TODO
expressions Nanogquiz: [yellkey.com/TODO

Open warmupTest.ts and runitwith npm run warmupTest

In the output, look for and compare:

e the parse tree
o relate to the grammar at the top of parser.ts
e the abstract syntax tree (AST)
o relate totheclasses Plus and Constant in IntegerExpression.ts

Fillinthe TODOs in warmupTest with input strings that produce different results:

e same AST but different parse tree
e same AST leaves (54, 2,89 in that order) and expression value,
but different parse tree and different AST

e same AST leaves and value, but parse tree with fewest possible primary nodes 0712

Nanoquiz

e This quizis just for you and your own brain:
o closed-book, closed-notes
o nothing else on your screen

e Lower your laptop screen when you're done

é yellkey.com/TODO

3/12

Multiplication)< yellkey.com/TODO

Today'’s starting code can handle addition of integers: 5+(2+3)
We want to support multiplication too: 5% (2+3%4)

Inthe grammar at the top of parser.ts:

Create a product nonterminal
o Don't forget to modify the enum IntegerGrammar
sum should now be a sum of products
product should be a product of primaries
e npm run grammarTest ;does it display the right parse tree for 5x(2+3%4) ?

5/12

What does this grammar do with the input string 1+2%37?
@skip whitespace {

expr = sum | product;
sum = primary ('+' primary)sx;
product ::= primary ('x' primary)x;
primary ::= constant | '(' sum ')' | '(' product ')';
¥
constant ::= [0-9]+;
whitespace ::= [\t\r\nl+;
Pick one:

e good parse tree
e wrong parse tree (doesn’'t respect PEMDAS)
e parse error (grammar doesn’t match entire string)

6/12

What does this grammar do with the input string 1+2%37?

@skip whitespace {

expr ::= primary ([+x] primary)x;
primary ::= constant | '(' expr ')';
¥
constant ::= [0-9]+;
whitespace ::= [\t\r\nl+;
Pick one:

e good parse tree
e wrong parse tree (doesn’'t respect PEMDAS)

e parse error (grammar doesn’t match entire string)

7/12

What does this grammar do with the input string 1+2%37?
@skip whitespace {

expr = sum;
sum = product ('+' product)sx;
product ::= primary ('x' primary)x;
primary ::= constant | '(' sum ')';

¥

constant ::= [0-9]+;

whitespace ::= [\t\r\nl+;

Pick one:

e good parse tree
e wrong parse tree (doesn’'t respect PEMDAS)
e parse error (grammar doesn’'t match entire string)

8/12

Multiplication)< yellkey.com/TODO

Today'’s starting code can handle addition of integers: 5+(2+3)

We want to support multiplication too: 5% (2+3%4)

Inthe grammar at the top of parser.ts:

Create a product nonterminal
o Don't forget to modify the enum IntegerGrammar
sum should now be a sum of products
product should be a product of primaries
e npm run grammarTest ;does it display the right parse tree for 5x(2+3%4) ?

Now update makeAbstractSyntaxTree in parser.ts:

e the if ... else if ... needsacasefor Product
e npm run parserTest tocheck the answer for 5%(2+3%4)

9/12

@skip whitespace {

expr ::= sum;
sum ::= product ('+' product)x;
product ::= primary ('x' primary)x;
primary ::= constant | '(' sum ')';

b

constant ::= [0-9]+;

whitespace ::= [\t\r\nl+;

Which of these would have to change (pick all that apply):
grammar makeAST () AST data type

to support this new feature:

variables

5x + 3y 10/ 12

@skip whitespace {

expr ::= sum;
sum ::= product ('+' product)x;
product ::= primary ('x' primary)x;
primary ::= constant | '(' sum ')';

b

constant ::= [0-9]+;

whitespace ::= [\t\r\nl+;

Which of these would have to change (pick all that apply):
grammar makeAST () AST data type

to support this new feature:

curly braces (with same meaning as parentheses)

{5+3}%6 11/12

@skip whitespace {

expr ::= sum;
sum ::= product ('+' product)x;
product ::= primary ('x' primary)x;
primary ::= constant | '(' sum ')';

b

constant ::= [0-9]+;

whitespace ::= [\t\r\nl+;

Which of these would have to change (pick all that apply):
grammar makeAST () AST data type

to support this new feature:

negative numbers (but not subtraction)

5+ -3 12/12

