
Class 13: (Avoiding) Debugging

6.102 — Software Construction
Spring 2024

1 / 16

Nanoquiz: yellkey.com/method

Exercise: yellkey.com/strategyWarmup
Go to warmup.ts . Run it if you want (npm run warmup) — what does it do?

Minimize every variable’s scope
by changing it to one of the following:

local variable
declared in as narrow scope as possible

parameter
you can change any method’s parameters or return value

instance variable of a Sudoku object
private if possible

2 / 16

Sir Tony Hoare (inventor of Quicksort),
in his 1980 Turing Award lectureHoare’s Revelation

On 11 October 1963, my suggestion … was to relax the ALGOL 60 rule of
compulsory declaration of variable names and adopt some reasonable default
convention such as that of FORTRAN.

I was astonished by the polite but firm rejection…. It was pointed out that the
redundancy of ALGOL 60 was the best protection against programming and
coding errors which could be extremely expensive to detect in a running
program and even more expensive not to.

I was eventually persuaded of the need to design programming notations so as
to maximize the number of errors that cannot be made, or if made, can be
reliably detected at compile time.

Perhaps this would make the text of programs longer. Never mind! The way to
shorten programs is to use functions, not to omit vital information. 5 / 16

Scope Minimization
 yellkey.com/strategy

In warmup.ts , change every variable to one of:

local variable
declared in as narrow scope as possible

parameter
you can change any method’s parameters or return value

instance variable of a Sudoku object
private if possible

6 / 16

class Sudoku {
 //A: firstRow: number;
 ...

 public isSolved():boolean {
 //B: firstRow: number;
 ...

 for each block {
 //C: firstRow: number;
 firstRow = block / blockSize;

 for each row {
 for each column {
 ... puzzle[firstRow+row] ...

// no other uses of firstRow

Where to declare
firstRow ?

A, B, or C

How?

public
private
let
const
readonly

7 / 16

class Sudoku {
 //A: numbers: Set<number>;
 public isSolved():boolean {
 //B: numbers: Set<number>;
 for each row {
 //C: numbers: Set<number>;
 numbers = new Set();
 ... numbers.contains(), numbers.add() ...
 }
 for each column {
 //C: numbers: Set<number>;
 numbers = new Set();
 ... numbers.contains(), numbers.add() ...
 }
 for each block {
 ... just like row and column loops ...
 }

// no other uses of numbers

Where to declare
numbers ?

A, B, or C

How?

public
private
let
const
readonly

8 / 16

function main():void {
 //A: puzzleSize: number;
 puzzleSize = 4;
 sudoku = new Sudoku();
 ...
}

class Sudoku {
 //B: puzzleSize: number;
 ...
 public Sudoku(/* C: puzzleSize: number */) {
 //D: puzzleSize: number;
 for row from 0 to puzzleSize-1 {
 for column from 0 to puzzleSize-1 {
 ...
 }
 }
// no other uses of puzzleSize

Where to declare
puzzleSize ?

A, B, C, D
(pick all that apply)

How?

public
private
let
const
readonly
(pick keyword if
any of your
declarations use it)

9 / 16

 yellkey.com/strategy

Let’s look at a user bug report
in solverTest.ts , the first test (bug #1079) is currently marked “skip”
change it.skip to it.only and run the tests

Write your answers to these questions in bugs.txt

1. Study the data

What’s different about this test vs. the other tests?
How many blanks does it start with?
What is wrong with its result?

10 / 16

 yellkey.com/strategy

Let’s look at a user bug report
in solverTest.ts , the first test (bug #1079) is currently marked “skip”
change it.skip to it.only and run the tests

Write your answers to these questions in bugs.txt

1. Study the data

What’s different about this test vs. the other tests?
How many blanks does it start with?
What is wrong with its result?

2. Hypothesize

Let’s assess hypothesis priorities

What modules (ADTs or functions) does solver.solve() depend on?
How well-tested are they? Critique the Sudoku tests in particular 11 / 16

3. Experiment
General hypothesis first: the bug is in solve()

Use the debugger to see what’s happening

Set a breakpoint on the line in the test calling solve()
Run
→
Start
Debugging
Step into solve() , and then step through and examine variables

Compare your mental prediction with what you actually see
Make notes about unexpected behavior in bugs.txt

12 / 16

3. Experiment
General hypothesis first: the bug is in solve()

Use the debugger to see what’s happening

Set a breakpoint on the line in the test calling solve()
Run
→
Start
Debugging
Step into solve() , and then step through and examine variables

Compare your mental prediction with what you actually see
Make notes about unexpected behavior in bugs.txt

4. Repeat
What’s a more specific hypothesis about the cause of bug 1079?

Try to fix it!

13 / 16

Minimizing a buggy test case

14 / 16

Minimizing a buggy test case
Remove the .only on the “bug #1079” test
Go to the last test (“covers all blanks”) and change it.skip to it.only
Minimize the test case
Find the bug

15 / 16

Sir Tony Hoare (inventor of Quicksort),
at a conference in 2009Hoare’s Apology

I call it my billion-dollar mistake. It was the invention of the null reference in
1965.

At that time, I was designing the first comprehensive type system for
references in an object oriented language (ALGOL W). My goal was to ensure
that all use of references should be absolutely safe, with checking performed
automatically by the compiler. But I couldn’t resist the temptation to put in a
null reference, simply because it was so easy to implement.

This has led to innumerable errors, vulnerabilities, and system crashes, which
have probably caused a billion dollars of pain and damage in the last forty
years.

16 / 16

