
Class 14: Concurrency

6.102 — Software Construction
Spring 2024

1 / 9

Exercise: yellkey.com/recently

Nanoquiz: yellkey.com/backIn�nite factorials
Open factorial.py and factorial.ts side by side
They are both supposed to compute an in�nite sequence of factorials starting from 9000!

Implement the TODOs in:

range_to_infinity (Python)
rangeToInfinity (TS)

Do not use range() or inf or POSITIVE_INFINITY in your implementations

Run both versions to con�rm that they now compute factorials starting from 9000!

python3 src/factorial.py
npm run factorial

2 / 9

Using threads and workers
Now open threads.py and workers.ts side by side, and run the code to see what it does

python3 src/threads.py
npm run workers

Notice that computeFactorials(4000) runs �rst, computing 4000!, 4001!, 4002!, …
then computeFactorials(7000) runs next, computing 7000!, 7001!, 7002!, …

Change the Python code �rst, so that computeFactorials(4000) and
computeFactorials(7000) run concurrently

don’t change computeFactorials or any functions it depends on
hint: what is the fewest number of new threads you need?

6 / 9

Using threads and workers
Now open threads.py and workers.ts side by side, and run the code to see what it does

python3 src/threads.py
npm run workers

Change the Python code �rst, so that computeFactorials(4000) and
computeFactorials(7000) run concurrently

don’t change computeFactorials or any functions it depends on
hint: what is the fewest number of new threads you need?

Now change the TS code, so that computeFactorials(4000) and
computeFactorials(7000) run concurrently

hint: create a Worker that runs ./dist/workers.js (yes, .js)
is it interleaving or not?

7 / 9

Using threads and workers
Now open threads.py and workers.ts side by side, and run the code to see what it does

python3 src/threads.py
npm run workers

Change the Python code �rst, so that computeFactorials(4000) and
computeFactorials(7000) run concurrently

don’t change computeFactorials or any functions it depends on
hint: what is the fewest number of new threads you need?

Now change the TS code, so that computeFactorials(4000) and
computeFactorials(7000) run concurrently

hint: create a Worker that runs ./dist/workers.js (yes, .js)
is it interleaving or not?

hint: try sorting the messages by timestamp, using npm run workers | sort 8 / 9

Race conditions
bank-main.ts , bank-cash-machine.ts , and bank-account.ts

implement the �lesystem shared-memory cash machine example from the reading

currently uses just one worker (NUMBER_OF_CASH_MACHINES = 1)
run the code using npm run bank and understand what it does

Now change NUMBER_OF_CASH_MACHINES to 2

�rst predict: what do you expect might happen?
then run the code

What is the actual problem?
→ Take notes at the bottom of bank-account.ts

What is the race condition?
What does a bad interleaving look like?

Try to �x… or at least work around… the problem 9 / 9

