
Class 15: Promises

6.102 — Software Construction
Spring 2024

1 / 11

ex: yellkey.com/term

nq: yellkey.com/staffWarmup
open bank.ts

npm run bank should print you have 200 dollars in your account

then follow the TODO to refactor it to use promises

�rst change fs.readFileSync to fs.promises.readFile
then �x the code to use Promise , async , await

npm run bank should still print you have 200 dollars in your account

2 / 11

We’ve refactored getBalance() , and the program compiles with no static errors
…but we haven’t refactored main() yet:

async function getBalance():Promise<number> {
 const data: string = await fs.promises.readFile('savings',
 { encoding: 'utf-8' });
 return parseInt(data);
}

function main():void {
 console.log('you have', getBalance(), 'dollars in your savings account');
}

main();

If we run the program now, what does main() print?

A. 200
B. Promise < 200 >
C. Promise < pending >
D. an error is thrown

6 / 11

Fetching web pages
open web.ts

npm run web to see it in action

refactor the code so that the web page downloads interleave

don’t change download() , just the code that calls it
hint: call download on every url before doing any await

7 / 11

Fetching web pages
open web.ts

npm run web to see it in action

refactor the code so that the web page downloads interleave

don’t change download() , just the code that calls it
hint: call download on every url before doing any await
hint: use map

8 / 11

Fetching web pages
open web.ts

npm run web to see it in action

refactor the code so that the web page downloads interleave

don’t change download() , just the code that calls it
hint: call download on every url before doing any await
hint: use map
hint: use Promise.all

9 / 11

Interleaving
open fact.ts

npm run fact to see it in action

do 99! and 100! interleave?
or do they look completely synchronous, even though factorial() is async ?

when can an async function give up control to other concurrent computations?

10 / 11

Interleaving
open fact.ts

npm run fact to see it in action

do 99! and 100! interleave?
or do they look completely synchronous, even though factorial() is async ?

when can an async function give up control to other concurrent computations?

try to change factorial so that 99! and 100! interleave

hint: use timeout(0)

11 / 11

