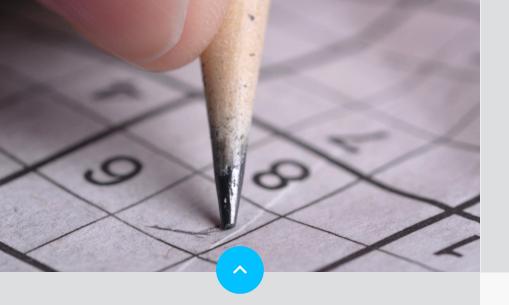
Sudoku Solver

11.06.2018

Magson Gao, Shreeyam Kacker

Sudoku Primer

Project Description


What is Sudoku?

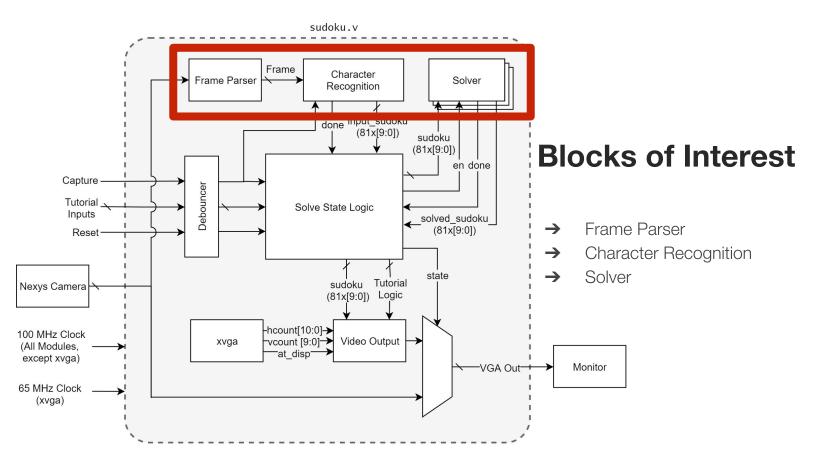
Fill 9x9 Grid with 81 × 1-9 Why FPGA?

Techniques?

Candidate Line, Naked and Hidden Groups

Human Techniques

- → Single position and single candidate
- → Candidate line
- → Hidden group
- → Many more... (but only we have 8 minutes)



- → Solve Sudoku using human techniques
- → Read Sudoku using a camera
- → Stretch Goal: include a tutorial mode which displays the steps for any solve

Block Diagram

Frame Parsing

Reducing the number of gates for Character Recognition

Calculate Threshold

Mean Intensity Of Pixels Convert to Black and White

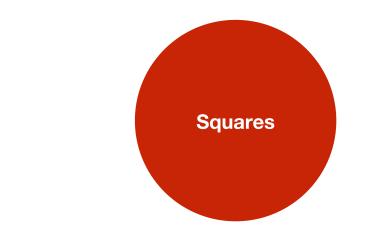
Resize

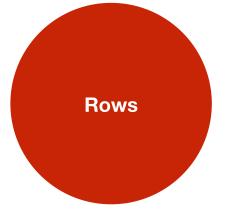
Character Recognition

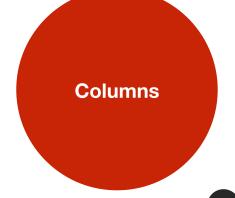
Template Matching

Store flattened B/W values of #s

ROM size: 9x pixels/char (bits) Compare with processed frames


9 XOR operations/cycle 9 result registers **Select**


Comparison operation using LUTs


Solving a Sudoku

Keywords

			2	6		7		1
6	8		7				9	
1	9				4	5		
8	2		1				4	
		4	6		2	9		
	5				3		2	8
		9	3				7	4
	4			5			3	6
7		3		1	8			

Single Candidate/Position

			2	6		7		1
6	8		7				9	
1	9				4	5		
8	2		1				4	
П		4	6		2	9		
	5				3		2	8
		9	3				7	4
	4			5			3	6
7		3		1	8			

			0	0		7		4
		ш	2	6	ш	7		1
6	8		7				9	
1	9				4	5		
8	2		1				4	
		4	6		2	9		
	5				3		2	8
		9	3				7	4
	4			5			3	6
7		3		1	8			

			2	6		7		1
6	8		7				9	
1	9				4	5		
8	2		1				4	
		4	6		2	9		
	5				3		2	8
		9	3				7	4
	4			5			3	6
7		3		1	8			

			2	6		7		1
6	8		7				9	
1	9				4	5		
8	2		1				4	
		4	6		2	9		
	5				3		2	8
		9	3				7	4
	4			5			3	6
7		3		1	8			

			2	6		7		1
6	8		7				9	
1	9				4	5		
8	2		1				4	
		4	6		2	9		
	5				3		2	8
		9	3				7	4
	4			5			3	6
7		3		1	8			

			2	6		7		1
6	8		7				9	
1	9				4	5		
8	2		1				4	
		4	6		2	9		
	5				3		2	8
		9	3				7	4
	4			5			3	6
7		3		1	8			

			2	6		7		1
6	8		7				9	
1	9				4	5		
8	2		1				4	
		4	6		2	9		
	5				3		2	8
		9	3				7	4
	4			5			3	6
7		3		1	8			

			2	6		7		1
6	8		7				9	
1	9				4	5		
8	2		1				4	
		4	6		2	9		
	5				3		2	8
		9	3				7	4
	4			5			3	6
7		3		1	8			

			2	6		7		1
6	8		7				9	
1	9				4	5		
8	2		1				4	
		4	6		2	9		
	5				3		2	8
		9	3				7	4
	4			5			3	6
7		3		1	8			

1,2,3,4,5,6,7,8,9

5 is the Single Candidate

			2	6		7		1
6	8		7				9	
1	9				4	5		
8	2		1				4	
		4	6		2	9		
	5				3		2	8
		9	3				7	4
	4			5			3	6
7		3		1	8		5	

Where can 9 go?

			2	6		7		1
6	8		7				9	
1	9				4	5		
8	2		1				4	
		4	6		2	9		
	5				3		2	8
		9	3				7	4
	4			5			3	6
7		3		1	8		5	

Where can 9 go?

This is the Single Position

How can a bunch of gates do Sudoku?

One-hot Representation

- → Simplifies logic significantly
- → Empty Cells = 0
- → Determining single candidates is a simple AND operation with masks of possible values
- → Determining single positions is a NOR and AND operation between masks

			2	6		7		1
6	8		7				9	
1	9				4	5		
8	2		1				4	
		4	6		2	9		
	5				3		2	8
		9	3				7	4
	4			5			3	6
7		3		1	8			

			2	6		7		1
6	8		7				9	
1	9				4	5		
8	2		1				4	
		4	6		2	9		
	5				3		2	8
		9	3				7	4
	4			5			3	6
7		3		1	8			

```
987654321
9= 100000000
4= 000001000
2= 000000010
7= 001000000
3= 000000100
| = 101001110
~= 010110001
8,6,5 or 1
```

			2	6		7		1
6	8		7				9	
1	9				4	5		
8	2		1				4	
		4	6		2	9		
	5				3		2	8
		9	3				7	4
	4			5			3	6
7		3		1	8			

```
987654321
7= 001000000
3= 00000100
1= 00000001
8= 01000000
| = 011000101
~= 100111010 not 1 and not 8
 & 010110001
```

000110000

			2	6		7		1
6	8		7				9	
1	9				4	5		
8	2		1				4	
		4	6		2	9		
	5				3		2	8
		9	3				7	4
	4			5			3	6
7		3		1	8			

```
987654321
7= 001000000
4= 000001000
3= 00000100
6= 000100000
| = 001101100
~= 110010011
 & 000110000
```

Must be a 5

Hidden Group Setup

- → Suppose we have N numbers which can only be placed in N positions
- → Then all N positions must contain one of the N numbers.

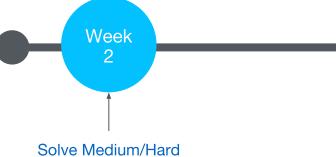
8	2,5	1	2,7	3,5	6	3,7	9	4
3	2,5	4,6	2,4,7	1,5	9	1,6,7	8	1,2,7
4,9	7	4,6	2,4	8	1,3	5	2,6	1,2,3
5	4	7	8,9	6	2	1,8	3	1,9
6	3	2	8,9	1,4	1,4	7,8	5	7,9
1	9	8	3	7	5	2	4	6
4,7	8	3	6	2	4,7	9	1	5
4,7	6	5	1	9	8	3,4,7	2,7	2,3,7
2	1	9	5	3,4	3,4,7	4,6,7	6,7	8

The empty cells contain the possible values:

```
{4,9}
{4,6}
{2,4}
{1,3}
{2,6}
{1,2,3} -> {1,3}
```

We have only 2 places where 1 and 3 can go, so it is impossible for 2 to be in the last cell

The digital algorithm very cool! The Q&A is coming up *wink* *wink*



Project Timeline

Key Dates

Verification and Validation of connected system

Project Submission

Sudokus Using Hidden Group and Single Backtracking Candidate/Position

Have Camera Working

Attempt to Implement

Week

3

Attempt to Implement **Tutorial Mode**

Week

6

Thank you for your attention

11.06.2018

Magson Gao, Shreeyam Kacker

8	2,5	1	2,7	3,5	6	3,7	9	4
3	2,5	4,6	2,4,7	1,5	9	1,6,7	8	1,2,7
4,9	7	4,6	2,4	8	1,3	5	2,6	1,2,3
5	4	7	8,9	6	2	1,8	3	1,9
6	3	2	8,9	1,4	1,4	7,8	5	7,9
1	9	8	3	7	5	2	4	6
4,7	8	3	6	2	4,7	9	1	5
4,7	6	5	1	9	8	3,4,7	2,7	2,3,7
2	1	9	5	3,4	3,4,7	4,6,7	6,7	8

The empty cells contain the possible

```
values: 987654321
{4,9} = 100001000
{4,6} = 000101000
{2,4} = 000001010
{1,3} = 000000101
{2,6} = 000100010
{1,2,3} = 000000111
```

In this algorithm we iterate over each set

8	2,5	1	2,7	3,5	6	3,7	9	4
3	2,5	4,6	2,4,7	1,5	9	1,6,7	8	1,2,7
4,9	7	4,6	2,4	8	1,3	5	2,6	1,2,3
5	4	7	8,9	6	2	1,8	3	1,9
6	3	2	8,9	1,4	1,4	7,8	5	7,9
1	9	8	3	7	5	2	4	6
4,7	8	3	6	2	4,7	9	1	5
4,7	6	5	1	9	8	3,4,7	2,7	2,3,7
2	1	9	5	3,4	3,4,7	4,6,7	6,7	8

Steps*

- → Add up the number of 1s of the mask we are working on (let's call the number of 1s **X** and the mask we are working on **Y**).
- → AND mask **Y** with every other possibilities mask (this includes the ones that are solved, though **these always give 0**). Let us call the results of the AND operations **A**.
- → If the number of 0s in **A** are equal to (9-x) then a **hidden group** is detected
- → If the number of masks in A with (# of 1s = X) is equal to (x-1) a naked group exists between the Y and the masks in these positions.
- → For every mask in the **hidden group**, replace it with the mask stored in **A**. For every mask outside the **naked group** replace the mask with (mask & ~Y).

8	2,5	1	2,7	3,5	6	3,7	9	4
3	2,5	4,6	2,4,7	1,5	9	1,6,7	8	1,2,7
4,9	7	4,6	2,4	8	1,3	5	2,6	1,2,3
5	4	7	8,9	6	2	1,8	3	1,9
6	3	2	8,9	1,4	1,4	7,8	5	7,9
1	9	8	3	7	5	2	4	6
4,7	8	3	6	2	4,7	9	1	5
4,7	6	5	1	9	8	3,4,7	2,7	2,3,7
2	1	9	5	3,4	3,4,7	4,6,7	6,7	8

The empty cells contain the possible

```
values:
          987654321 A: 987654321
{4,9}
          100001000 ->00000000
{4,6} =
          000101000 ->00000000
\{2,4\} =
          000001010 ->00000000
\{1,3\} =
          000000101
{2,6}
          000100010
                     ->00000000
\{1,2,3\} =
          000000111
                     ->00000101
X = 2
Number of masks = 0 in A = 4 + 3
Number of masks with 2 \times 1 = 1
```

*This method works for all hidden pairs and the vast majority of other worthwhile group sizes

Naked Group Setup

- → Suppose we have N numbers which are the only possible values for N positions
- → Then all N positions must contain one of the N numbers. No other position in the row/column/square can contain the N numbers.

8	2,5	1	2,7	3,5	6	3,7	9	4
3	2,5	4,6	2,4,7	1,5	9	1,6,7	8	1,2,7
9	7	4,6	2,4	8	1,3	5	2,6	1,2,3
5	4	7	8,9	6	2	1,8	3	1,9
6	3	2	8,9	1,4	1,4	7,8	5	7,9
1	9	8	3	7	5	2	4	6
4,7	8	3	6	2	4,7	9	1	5
4,7	6	5	1	9	8	3,4,7	2,7	2,3,7
2	1	9	5	3,4	3,4,7	4,6,7	6,7	8

The empty cells contain the possible

```
values: 987654321 \text{ A}: 987654321 \text{ }

\{4,9\} = 100001000 \text{ -> } 000001000 \text{ }

\{4,7\} = 001001000 \text{ -> } 001001000 \text{ }

\{4,7\} = 001001000 \text{ -> } 001001000 \text{ }

X = 2, \sim Y = 110110111 \text{ }

Number of masks = 0 in A = 0 + 6

Number of masks with 2 \times 1s = 1
```

The 3rd cell must be a 9