FPGA Software Defined Radio (SDR)

Colin Chaney and Charles Lindsay
The 1920's
Overview - What is a SDR?

- Receive, demodulate and decode a signal in “real time” in the digital domain
- Allows for flexible radio configuration and interface with other digital systems
Our SDR

- RF simulated by function generator
- Demodulate AM and FM audio signals and play sound
- VGA monitor
 - FFT of received RF spectrum (0 - 500 kHz)
 - Audio signal

Stretch Goals

- Add front end to receive AM radio (540 - 1600 kHz)
- Waterfall display on VGA
- Demodulate FSK, BPSK, QPSK
RF DSP
RF DSP Chain

Sample and Mix

Band Pass

AM Demodulation

- ADC
- Minus Offset
- Mixer
- Local Oscillator

Band Pass 1 (AM)

Band Pass 2 (FM)

Band Pass N TBD

AM signal

FM signal

TBD signal

Peak Detect and Zero-Order Hold

Zero-Crossing Freq Detect

ΔFreq to Amplitude

Demodulate TBD

audio

audio

audio
Sample and Mix

Nyquist freq = 500 KHz
- Limited by Nexys 4 DDR ADC
- With front end could be 5 MHz

IF = 455 KHz

Local oscillator synthesized on FPGA
Band Pass

AM FIR
- $f_c = 455$ kHz (IF)
- $f_m = 5$ kHz

FM FIR
- $f_c = 455$ kHz (IF)
- $f_m = 8$ kHz
 - Carson Bandwidth Rule, for signal with peak $\Delta f = 5$ kHz & max audio = 3 kHz

Wide band FM (radio broadcast)
FM radio stations in 88 - 108 MHz range have BW > 200 kHz and multiple sidebands
AM Demodulation

Peak Detection
- Results in reconstructed digitized audio signal sampled at 455 kHz
- Will be down sampled to generate 48 kHz audio
FM Demodulation

Frequency Detect
- Identify period between zero crossings to detect instantaneous freq = $f_s(t)$

$$ f_s(t) = f_c(t) + k \cdot s(t) $$

- Convert $f_s(t)$ to audio $s(t)$

$$ s(t) = \frac{f_s(t) - f_c(t)}{k} $$
VGA Output
VGA Options

1-) Display the Audio Waveform

2-) Display full frequency spectrum

3-) Narrow band frequency spectrum with waterfall display
FFT and VGA Out

Zoom and FFT

Waterfall

Displaying Waveform

Audio to Speaker

Trigger
Zoom and FFT

- **Zoom**
 - Limit the FFT frequency by oversampling
 - Change FFT magnitudes we display, depending on desired user range

- **FFT**
 - Used to display the frequency spectrum of our signal
 - Shows the different radio signals we can demodulate
 - Work with module given to us on piazza
Waterfall Display

- Stores Magnitude of FFT over time
 - Shows how signals grow and decay
- Have a color gradient to display how strong the signal is
- Most memory intensive part of the system
 - Reduce memory usage by limiting to our IF + Bandwidth
 - Can also reduce memory usage by limiting how far back we look at data
Displaying the Audio Waveform

- Most complex module
- Will display different waveforms depending on user input
- Trigger from audio input to make signal stay the same
- Has two BRAMs for frame buffering
- Display from centerline with adjustable height
Timeline

<table>
<thead>
<tr>
<th>Week</th>
<th>Actionable(s)</th>
<th>Class Deadlines</th>
<th>Milestones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week of 10/29</td>
<td>1. Take in un-modulated audio from function generator, output to speaker, and display on monitor (Chaney)
2. Setup testing configuration such that we can modulate audio source from phone and input into FPGA (Charles)</td>
<td>Block Diagram Meetings / Project Proposal</td>
<td></td>
</tr>
<tr>
<td>Week of 11/04</td>
<td>1. Create a bandpass filter for the IF and bandwidth of AM (Charles)
2. Demodulate the AM signal such that we can play the audio signal and display it on the monitor (Charles)
3. Implement an FFT for the original signal and get it to display on the monitor with the bandwidth (Chaney)</td>
<td>Project Design Presentation</td>
<td>Absolute Bara Minimum Met</td>
</tr>
<tr>
<td>Week of 11/11</td>
<td>1. Create a bandpass filter for the IF and bandwidth of FM Radio (Charles)
2. Demodulate the FM signal such that we can play the audio signal and display it on the monitor (Charles + Chaney)</td>
<td>Project Checklist Meeting</td>
<td></td>
</tr>
</tbody>
</table>

Week of 11/11
- Create a bandpass filter for the IF and bandwidth of FM Radio (Charles)
- Demodulate the FM signal such that we can play the audio signal and display it on the monitor (Charles + Chaney)
- Project Checklist Meeting
- Desired Functions Met - Rest is just stretch goal

Week of 11/18
- Perform an FFT on the band-passed signal we are outputting and write the intensity back in memory. Use this to display a waterfall along with the narrow FFT (Chaney)
- Develop interface for RF front end including control of local oscillator and ADC read (Charles)
- Short Week

Week of 11/25
- Re-evaluate the feasibility of having a working RF front-end and see what all has to be done to get it to work (Charles + Chaney)
- Project Development ends

Week of 12/02
- Select one or more of the stretch goals and try to implement them (Charles + Chaney)
- Debug all past points to make sure they are operating as expected (Charles + Chaney)
- Project Report and Checkoff

Week of 12/09
- Make Report
- Film Checkoff