FPGA autotune Checklist

Kika Arias and Elaine Ng

● The Commitment: (all modules work separately and not in real time)
 ○ Spectrogram (Kika)
 ■ Visualization of the STFT on the monitor
 ■ Will be tested by visualizing a signal of known frequency
 ○ STFT (Elaine)
 ■ Short time fourier transform of the input audio signal
 ■ Will be tested by using the spectrogram visualization on a test signal of known frequency
 ○ Peak Detection (Kika)
 ■ Detects the note onsets in the STFT
 ■ Detects the main frequencies in the STFT
 ■ Tested visually by using the Spectrogram (peaks will be colored differently than the rest of the graph)
 ○ Frequency Shift (Elaine)
 ■ The signal will be reconstructed in sine tones at the correct frequencies
 ● To the nearest note on the Western scale
 ■ This will be tested by outputting the corrected audio and also visually with the spectrogram visualizer
 ○ Input audio (Kika)
 ■ This module takes in audio from an external microphone.
 ■ This will be tested by outputting audio on headset
 ○ Output Audio (Kika)
 ■ This module outputs the audio to an external headset or speaker
 ■ This will be tested by listening to the audio

● The Goal:
 ○ Integration (Elaine + Kika):
 ■ All modules in the commitment working together
 ○ Output a recording of pitch corrected audio 30 seconds long (Elaine)
 ○ Uses SD Card for memory (Kika)

● Stretch Goal:
 ○ Different voice effects (Elaine + Kika)
 ■ Make voice sound like a chipmunk or Darth Vader
 ■ This module will be tested by applying the effect on test signals and listening to the output
 ○ Saving and loading audio (up to 1 minute long) (Kika)
 ○ Frequency Shift (Elaine)
 ■ This module generates the filter and takes its IFFT and multiplies the filter in the time domain
- This will be tested using test signals of known frequencies that will be played to the system
 - Real time autotune (Elaine + Kika)