FPGA Tetris

Roberto Garcia
Game Logic – Game State

• A game state can be represented by the state of all currently placed squares, as well as the currently falling Tetromino
• The playing grid is comprised of 200 squares, each of which will be in a colored state or empty state
• Grid will transition states upon a falling Tetromino landing
• A falling Tetromino can be in 1 of 4 rotational orientation states, and any coordinate
 • Next state will be determined by rotation input and left/right input
Graphics

• Character Generation:
 • Identically sized characters A-Z, 0-9 stored in memory
 • Can be parsed together to display text and scores

• Playing grid generation:
 • Draw 200 unique squares
 • Each square will be colored by feeding in the corresponding color state and mapping it to an RGB value
Game Logic – Tetromino Generator

- There are 7 unique Tetrominoes
- Generate using a linear-feedback shift register, a pseudorandom number generator
Game Logic – Tetromino Generator

• Problem
 • Initial seed results in same first game every play session

• Solution
 • Cycle through LFSR every clock cycle in background
 • Next Tetromino is a function of PRNG sequence and how much time has elapsed since last Tetromino generation
NES Controller Interface

• A 12 μs Latch pulse commands the controller capture the current state of all buttons

• Button states are sent serially via 6μs pulses

 Latch

 Pulse

 Data
 A B Select Start Up Down Left Right

• Repeating every 120 μs gives 138 samples/frame to debounce with
Audio

- A single theme song will be continuously playing on a loop
 - Stored in SD card
- Simple short-tone sound effects will be included
 - Higher priority, will momentarily pause music playback
SD card

• Interfaced with using the provided SD controller
• Music:
 • preload music data bits directly using software to avoid SD filesystem
 • Read only
• High Scores:
 • Can be stored in predetermined location anywhere on SD card that does not overlap with music
 • Reads and writes
Timeline

• 11/4: Display matrix of Tetrominoes, begin implementing core gameplay logic via FPGA button inputs
• 11/11: Finish implementing core gameplay logic, add text generation
• 11/18: Add NES controller interface, add sound effects
• 11/25: Implement music reading from SD card and high score saving/loading
• 12/2: Debugging