
The Specification, Design, and Implementation of a

Home Automation System

Javier Castro and James Psota
{javy,psota}@mit.edu
6.111: Introductory Digital Systems Laboratory Final Project
Massachusetts Institute of Technology

This paper presents the specification, design, and implementation of a home automation system

that was designed and built as a final project for 6.111 at M.I.T. This system was designed to be

flexible and generally programmable, extensible such that adding additional features is relatively

simple, and modular and forward-compatible, so that new components can be added without

redesigning the entire system. To achieve these goals, the system runs a user-defined program

on a special-purpose processor, using real-world sensor inputs as operands. The sensors and

other input mechanisms along with user-programmable event schedules allow the user to adjust

and customize the home environment. Using sensors that measure temperature, light level, and

infrared commands from a remote control, this system will create a comfortable and safe home

atmosphere. Design decisions, implementation details, and testing procedures are thoroughly

discussed, and the resulting functional system is described.

2 ·

Contents

1 Introduction 4

2 Design and Implementation 4
2.1 Input/Sensor Layer . 4

2.1.1 IR Module . 4
2.1.2 Clock Module . 9
2.1.3 Temperature Module . 9
2.1.4 Light Module . 13

2.2 Control Layer . 14
2.2.1 Major FSM . 15
2.2.2 Instruction Format . 16
2.2.3 Program Format . 17
2.2.4 Compiler . 18
2.2.5 Truth Engine Processor . 18
2.2.6 Status Monitor: Hardware . 19
2.2.7 Status Monitor: Software . 20

2.3 Actuator Layer . 21

3 Testing 22
3.1 IR Module . 22
3.2 Temperature Module . 22
3.3 Light Module . 23
3.4 Control Layer . 23
3.5 Actuator Layer . 23
3.6 Integration Testing . 24

4 Conclusion 24

List of Figures

1 Three-layer System Architecture . 5
2 IR Transmitter/Receiver Waveforms . 5
3 Phillips RC-5 Encoding Protocol . 6
4 IR Module Block Diagram . 7
5 IR Module State Transition Diagram . 8
6 IR Module Simulation Waveform . 8
7 Clock Module Block Diagram . 9
8 Clock Module Waveform Simulation . 10
9 Temperature Module Block Diagram . 11
10 A/D Interface State Transition Diagram 12
11 Sensor Module State Transition Diagram 13
12 Temperature Module Simulation Waveform 13
13 Light Module Simulation Waveform . 14
14 Simple Thermostat Program . 14
15 Top-Level Control Unit Block Diagram 15
16 Control Unit Major FSM . 16

· 3

17 64-bit Instruction Format . 16
18 Compiler Interface . 18
19 Truth Engine Processor Block Diagram 19
20 Status Monitor FSM . 20
21 Status Monitor Screen Shot . 21
22 Lab Kit Integration Testing Setup . 24

List of Tables

I Opcode Map . 17

4 ·

1. INTRODUCTION

[Written by James Psota]

Homes of the 21st century will become more and more self-controlled and automated.
Simple devices such as a timer to turn on one’s coffee maker in the morning have been
around for many years, but much more sophisticated mechanisms will soon be prevalent in
homes around the world. Imagine walking into your home and being greeted at the door
with lights illuminating your path without you ever having to touch a light switch, with your
favorite music streaming through the speakers in whichever room you enter (because your
home recognized that it was you and not some other household member), all while having
the peace of mind knowing that your home automation system took care of activating your
security system. Furthermore, such a system could allow the user to schedule events to
occur at recurring intervals (e.g., turn on sprinkler system at 4:30a.m. every Tuesday and
Thursday).

This report describes an approximation of such a home automation system that was
designed and built as a final project for 6.111 at M.I.T. This system was designed to be
flexible and generally programmable, extensible such that adding additional features is
relatively simple, and modular and forward-compatible, so that new components can be
added without redesigning the entire system. To achieve these goals, the system runs a
user-defined program on a special-purpose processor, using real-world sensor inputs as
operands.

The rest of this paper is organized as follows. In Section 2, details of the design and
implementation are thoroughly discussed. Section 3 discusses the testing strategy that was
used to get the system up and running. Finally, Section 4 concludes the paper.

2. DESIGN AND IMPLEMENTATION

[Written by James Psota]

Section 1 motivated the importance of an extensible and flexible system. This section
describes the resulting top-level design that reflects these goals.

The Home Automation System (HAS) has three logical levels, as seen in Figure 1. The
top-most layer is the input/sensor layer, which can be from sensors, clock modules, re-
mote controls, or any other kind of input. The control unit comprises the next layer. This
layer reads the inputs and performs actions depending on the values of the inputs and the
control program specified by the user. Finally, the control unit outputs commands to the
actuator layer. The actuator layer is responsible for forming and sending commands to the
real-world systems such as lights, HVAC systems, security systems, and music systems.
The details and corresponding subcomponents of each of these layers are described in the
remainder of this section.

2.1 Input/Sensor Layer

The input/sensor layer is responsible for acquiring data and formatting the data to a digital
signal that the control layer understands. In our implementation, such a format is simply
an 8-bit digital active-high signal. This section describes the design and implementation of
each of the sensor inputs in detail.

2.1.1 IR Module. [Designed, Implemented, and Written by Javier Castro]

· 5

control

sensors/

inputs

actuators

temp
light

level
clock

remote

control

commands

special-

purpose

processor

status

Fig. 1. Three-layer System Architecture

A remote control interface is provided as an input that can be used to interact with
the HAS. In order to make this possible, the system interfaces with an infrared receiver
which demodulates a 36kHz infrared signal to a digital format that can then be decoded
and offered as input to the HAS control layer . The basics of infrared transmission are
that when an infrared light is turned on and off at a frequency of 36kHz, the signal is
interpreted to be in the on state (See Figure 2). When no light is flashing, the signal is in
the off state. There are many different methods that can be used to encode a signal using
infrared transmission. The Phillips RC-5 protocol was chosen for the HAS because it is
well documented and has a fairly simple protocol.

Transmitter

Receiver

Transmitter

Receiver

Fig. 2. IR Transmitter/Receiver Waveforms

Rather than using a variable bit-length encoding scheme, as is used by other protocols,
the RC-5 protocol uses a form of Manchester Encoding to represent 1’s and 0’s. This
means that in order to transmit a 1, the transmitter is silent for the first half of a bit, and
blinking at 36kHz for the second half of the bit. A 0 is transmitted by a similar sequence:
an on signal followed by an off signal.

Every message in the RC-5 protocol is 14 bits in length and is repeated every 114ms as
long as a key is pressed. Each bit is 1.8ms in length meaning that each half bit is 0.9ms
long. A message takes 25.2ms to transmit and is repeated every 114ms while a button is
pressed. Repetition occurs in case the signal was not received correctly the first time. Each
message takes the form that is shown in Figure 3. The first two bits are called the start
bits and are always 1’s. The next bit is called the check bit and is used to signal when a
new button has been pressed. The check bit is in one state as long as a button is pressed so
that an IR receiver can determine whether a message is new or a repetition of the previous

6 ·

chk

1 1 1 1 1 10 0 0 0 0 0 0 0

start address commandchk

1 1 1 1 1 10 0 0 0 0 0 0 0

start address command

Fig. 3. Phillips RC-5 Encoding Protocol

message. This allows users some room for error. For example, if a person holds down the
“7” button on a remote control for longer than 114ms, the receiving system will understand
that only a “7” was intended and that “77” is not an intended input. The next button press
will toggle the state of the check bit. This change in bit is to be expected by the receiving
system and indicates that a new button has been pressed. After the check bit, five address
bits are transmitted. These bits are used to tell a system that the message is directed to it.
For example, address 0 is reserved for TV1 and address 1 is reserved for TV2. This means
that people can have two TV’s in the same room, and commands intended for one TV are
not processed by the other. The last six bits of the message are the command bits. These
bits specify which button has been pressed. A television, for example, could then turn its
monitor on or change channels. The Home Automation System checks the address bits of
a message only to ensure that a message is still being transmitted. This means that it does
not matter what the address bits actually are, just that they abide by the RC-5 protocol in
that the state of the first half of a bit is different from the state of the second half of the bit.

Responsible for receiving the infrared signal from a remote control is a TSOP2236 chip
from Vishay electronics. The circuit is intended to detect a 36kHz infrared signal and
interpret it as a valid 1. The TSOP2236 actually inverts the signal that is received so that a
valid 1 corresponds to the low state and a valid 0 corresponds to the high state. Following
the instructions found on the data sheet, a 4.7µF capacitor was placed between the power
and ground leads and a 100Ω resistor was placed between the power lead and Vdd. The
purpose of the capacitor and resistor is to suppress power supply disturbances (Please refer
to Figure 4).

The IR Decoding FSM is responsible for taking the demodulated signal from the IR
receiver and parsing it for the command bits (See Figure 5). If the signal that is being
received does not follow the RC-5 protocol, the FSM resets and waits for the next signal.
A negative edge in the input signal asserts the start signal output of the FSM. Every pos-
itive clock edge signals the IR Decoding FSM to check whether the read signal which is
provided by the timer is asserted. If the read signal is asserted, the module will check to
see if it needs to change state; otherwise no state change will occur.

The FSM begins in the wait state. Since the read signal will only be asserted if the
module has already received a negative edge as input from the IR receiver, the wait state
checks to see that the second start bit is being received at this point. If the input signal is
low, the FSM moves to the start state, otherwise the timer is reset and the FSM remains in
the wait state. If in any of the states, the RC-5 protocol is broken, the FSM resets the timer
and returns to the wait state. The start state checks that the input signal is high (second half
of the second start bit) when the read signal is asserted and proceeds to the toggle1 state. In
the toggle1 state, the FSM checks that the current message that is being received is not the

· 7

Data_en

12

Register Data

IR Receiver

S
y
n
c
h
ro

n
iz

e
r

FSM

Timer

Registers

2 Start, ResetRead

Reg_en

S
ig

n
a
l

S
ig

n
a
l_

s
y
n
c

12

Data_en

12

Register Data

IR Receiver

S
y
n
c
h
ro

n
iz

e
r

FSM

Timer

Registers

2 Start, ResetRead

Reg_en

S
ig

n
a
l

S
ig

n
a
l_

s
y
n
c

12

Fig. 4. IR Module Block Diagram

same as the previous message that was received. If the current message is a new message,
the state of the input signal is saved to two registers. One is for reference on the next FSM
iteration. The other register is the generic prev register where the state of the first half of
each bit is stored. The FSM now proceeds to the toggle2 state. If the state of the input
signal, at this point is different from the value held in the prev register, the FSM proceeds
to the address1 state. On assertion of the read signal, the FSM will store the state of the
input signal to the prev register, and move to the address2 state. While in the address2
state, if the state of the input signal is different from the value held in the prev register
the FSM will assert the data en signal so that the address bit that is being provided as an
input signal can be stored if desired. If five address bits have been received, the FSM now
moves to the command1 state; otherwise it returns to the address1 state and repeats the
process described above. The two command states (command1 and command2) behave
the same way as the two address states, except that on the last command bit, the reg int
signal is asserted. The reg int signal is used to enable a register which will hold the parsed
command bits. The reg en signal gets the value of reg int one clock cycle later so that all
of the command bits can be registered in the series of registers before being placed in a 6
bit register all together.

The decoder timer module has a start and reset signal as controls and a read signal as
output. The timer module is a small state machine that waits for a start signal. Once the
start signal is asserted, it proceeds to a delay state where it counts the length of a quarter bit
(.45ms). Once this delay has occurred the timer moves to the count state where the timer
counts .9ms and then asserts the read signal for the length of the period of the system clock
(10MHz is expected). This sequence is repeated 26 times: the number of half bits in the 14

8 ·

WAIT

TOGGLE1

START

COMMAND

2

~signal

signal

reset or failed

condition

TOGGLE2
ADDRESS

1

COMMAND

1

ADDRESS

2

toggle != signal

~signal

prev != signal

prev != signal

counter < 4

prev != signal

counter >= 4

prev != signal

counter < 5

prev != signal

counter >= 5

Fig. 5. IR Module State Transition Diagram

bit message when excluding the first bit. This is the number of times the IR Decoding FSM
needs to check the state of the input signal. Whenever the IR Decoder Timer is reset, or
completes the count state, it returns to the wait state, where it does nothing until it receives
an asserted start signal. A waveform of the hardware simulation can be seen in Figure 6.

Fig. 6. IR Module Simulation Waveform

· 9

2.1.2 Clock Module. [Designed, Implemented, and Written by James Psota]

One of the goals of the HAS was to be able to schedule actions and events for certain
times during the day or days of the week, for instance. Because of the HAS’s flexible
design, incorporating such functionality was simply a matter of adding another set of inputs
that provided the current time and date.

The clock module keeps track of the following fields of the current date:

—seconds

—minutes

—hours

—day of week

—date

—month

—year

The system takes into account the number of days in each month, as well as leap years.
The block diagram of the system is shown in Figure 7. Note the interdependence of each
sub-unit on one another. There are some obvious unidirectional dependencies, such as that
from the minute counter to the second counter. One of the dependencies, however, is bi-
directional; the dependency between the date counter and the month counter is two-way,
as the date counter must be aware of which month it is to determine when to rollover, and
the month counter must know when to increment to the next month.

10 MHz
sec min hour day

date

month year
6 6 5 3

5 3 8

Fig. 7. Clock Module Block Diagram

Figure 8 shows a simulation of the clock module. Note that the date in the simulation
is initialized at February 28, 2004 23:59:45, and that the date transitions to the 29th of
February, as 2004 is a leap year.

2.1.3 Temperature Module. [Designed, Implemented, and Written by Javier Castro]

The Temperature Module is responsible for providing the control layer with a repre-
sentation of the ambient temperature. The module takes a voltage, which represents the
ambient temperature, as input and converts the information to a 2’s complement binary
number which represents the temperature in degrees Fahrenheit (See Figure 9). The fact
that the temperature is initially represented as a voltage and then converted to a binary

10 ·

Fig. 8. Clock Module Waveform Simulation

number implies that there is an analog as well as a digital component to this module. The
analog component provides a voltage to an AD670 analog to digital (A/D) converter. The
AD670 is controlled by a finite state machine which is located within the FPGA. There is
a Sensor FSM which controls the A/D Interface FSM, and is triggered by a sample timer.
When the sample signal is asserted by the Timer module, the previously converted Fahren-
heit temperature and the previously computed binary voltage value are registered and a
new A/D conversion is started.

The analog part of the temperature module consists of a thermistor, 62kΩ resistor, and
an LM741 Op Amp. A thermistor is a component that has a variable resistance which
depends on the ambient temperature. It is made of D14.0 material and has a resistance
of 100kΩ at 25oC. A voltage divider was created by placing the thermistor in series with
the 62kΩ resistor and measuring the voltage across the non-variable resistor. The range of
valid temperatures to 50-95oF, which in turn restricted the resistance of the thermistor to
a range from 61kΩ to approximately 222kΩ. The reason for choosing a 62kΩ resistor for
the voltage divider was so that the range of input voltages to the A/D converter would fall
into the range of 0-2.55V. Due to a 10kΩ load resistance located in the AD670, the voltage
from the voltage divider had to be passed through an operational amplifier which was
arranged in a voltage follower configuration. This caused the voltage, which the AD670
was experiencing across its leads, to be the voltage that was expected from the calculations
of the voltage divider.

The A/D Interface FSM allows the temperature module to obtain a binary representation
of the temperature dependent voltage from an AD670 which is setup so that the output
is formatted in straight binary representation and the input that is expected is from 0V to
2.55V. Please refer to Figure 10 for a state transition diagram. The A/D Interface has a
go and status signal as inputs, and outputs a busy signal, a reg en signal, and three control
signals (cs bar, ce bar, and r w bar). The go signal is connected to a sensor FSM and is
asserted whenever an A/D conversion and reading should take place. This submodule has
nine states: an idle state, four

read states, three conversion states, and a wait state. The idle state is the initial as well as
reset state of the FSM. This state waits for the go signal to be asserted in order to proceed
to the next state; otherwise nothing occurs in this state. There are four read states so that
the setup and hold time requirements for the read cycle of the AD670 are met. The busy
signal is asserted during the four read states, and the reg en signal is asserted during only
the fourth read state. In order for the AD670 to begin reading the data, the cs bar and
ce bar signals must be held low and the r w bar signal must be high for at least 250ns.
As a result, there must be three read states, with the fourth allowing for pin stabilization
and registering of the value which is being read. The reg en signal is used to enable a
register which holds the binary representation of the newest voltage sample. The A/D

· 11

A
D

6
7

0

A/D Interface

S
y
n

c
h

ro
n

iz
e

r

C
o

n
v
e

rs
io

n

M
o

d
u

le

T
e

m
p

e
ra

tu
re

R
e

g
is

te
r

V
o
lt
a

g
e

R
e

g
is

te
r

Sensor FSM

Timer

3 ~cs, ~ce, r/~w

8

voltage

8 8

reg_en

s
ta

tu
s

busy go

sample

8

sensor_en

analog_in

Fig. 9. Temperature Module Block Diagram

Interface FSM then continues to the three conversion states. Again, these states satisfy
the setup time requirement for the write cycle of the AD670. The final wait state of this
FSM is provided so that the cs bar, ce bar, and r w bar signals remain low until the AD670
actually begins a new write cycle. The wait state is waiting for the status signal from the
AD670 to be asserted before returning the FSM to the idle state.

The Sensor FSM is responsible for registering the newest voltage to Fahrenheit conver-
sion as well as starting a new A/D conversion whenever a sample is desired. The Sensor
FSM has five states (See Figure 11). The idle state is where the Sensor FSM waits for the
next sample time. Once the sample signal is asserted, the FSM proceeds to the register
data state where it enables the sensor register so that the previous Temperature calculation
is available for the control layer to read. The next three states concern A/D conversion and
are provided so that the Sensor FSM will not return to the idle state until an A/D conversion
has been initiated. The start reading state sends a start signal to the A/D Interface FSM.
Next, the Sensor FSM waits for the A/D Interface to signal that it is no longer busy before

12 ·

IDLE

READ1

READ0

CONV2

WAIT_STA

TUS_HIGH

~go

go

~status reset

status

READ2READ3

CONV1

CONV0

Fig. 10. A/D Interface State Transition Diagram

returning to the idle state.
The voltage which is sampled by the AD670 needs to be converted to a Fahrenheit value

so that the control layer is able to process the data. Using matlab, the voltages which
appear across the voltage divider at different temperatures from the range of 50-95oF were
computed and converted to binary. Using this information, a look up table, implemented
by a Verilog if tree, was generated within a clocked module so that whenever a voltage
provided as input, the module would produce the corresponding temperature, in degrees
Fahrenheit, as output. The reason for using a look up table, rather than some other method,
was because the resistance of the thermistor, which was used in the analog component of
the temperature module, is non-linear.

The timer block of the Temperature module is a clock divider that takes a 10MHz clock
signal, and slows it down to an arbitrary length periodic signal. For the purposes of the
HAS, the timer was set to assert its sample signal once every second. This is because
temperature is not a rapidly changing environment variable and instead is fairly constant
in the home environment. Figure 12 contains an image with a simulation waveform of this

· 13

IDLE

START_RE

ADING

REGISTER

_DATA

WAIT_BUS

Y_HIGH

WAIT_BUS

Y_LOW

~sample

~busy

busy

reset

busy

Fig. 11. Sensor Module State Transition Diagram

module.

Fig. 12. Temperature Module Simulation Waveform

2.1.4 Light Module. [Designed, Implemented, and Written by Javier Castro]

The Light Module was created by placing a PDV-P5001 photoresistor from Photonic
Detectors Inc. in series with a 2kΩ resistor and measuring the voltage across the non-
variable resistor. The result is a voltage divider similar to the one used in the Temperature
Sensor. Once again, the voltage had to be passed through an LM741 Op Amp in order to
avoid the voltage drop across the resistance load of the AD670. The two systems, Light
Module and Temperature Module, were similar enough to use all of the same components
with the exception of a substituted conversion module. The reason for choosing a 2kΩ

resistor as opposed to any other resistance was so that the voltage measured by the AD670
would fall into the range of 0-2.55V. At ambient light levels, the voltage across the non-
variable resistor is approximately 2.46V.

14 ·

Since light level is measured in lumens, it seemed to make more sense to have a scale
from 0-9 to represent different levels of light. This is because, unlike temperature, people
do not have a general idea for how many lumens a particular level of light may be. With
this in mind, the Light Module takes a voltage that ranges from 0-2.55V that is represented
in straight binary returns which decade the voltage falls into with 9 corresponding to 2.46V
and higher, and 0 corresponding to 0.36V and lower. This module was implemented using
a series of if statements. Figure 13 depicts a simulation waveform of this module. For
associated A/D interface and state transition diagrams, please refer to Figure 10 and 11.
The block diagram is similar to that depicted in Figure 9, but has a different conversion
module.

Fig. 13. Light Module Simulation Waveform

2.2 Control Layer

[Designed, Implemented, and Written by James Psota]

Before diving into the lower-level details of the control system, here is a primitive ex-
ample of how the HAS would be used as a thermostat. Assume the system has an input
that specifies the current temperature in the room that is to be climate-controlled, and has
an actuator output that is connected to a heating unit. Also assume that the user desires to
turn the heat on when the temperature falls below 66◦F, and turn the heater back off when
the temperature raises above 68◦F. The user would then have to write a program to specify
these actions, with one instruction to turn the heater on when the “on” condition is true,
and one instruction to turn the program off when the “off” condition is true. The specific
instruction format is described in section 2.2.2, but a textual description of each of the
instructions as seen in Figure 14 is illustrative. For this example, assume the temperature
sensor plugged into sensor input slot 7, and the heater is plugged into actuator output slot
3.

Instruction-I If sensor 7 < 66, set actuator 3 to 1
Instruction-II If sensor 7 > 68, set actuator 3 to 0

Fig. 14. Simple Thermostat Program

This program, when run by the control unit, performs the user’s desired action.
The top-level block diagram of the control unit can be seen in Figure 15. The cu control

module is the major FSM that prompts the other components to stop and go. The
truth engine block is the main processing unit. This block reads instructions from the
instruction memory (implemented in an internal RAM) and executes it using sensor inputs

· 15

as operands. Finally, the status monitor provides the user with a real-time view of the
system’s inputs and outputs via the RS232 port of a host PC.

...

...

...

cu_control

(major FSM) truth engine

processor

instruction

memory

status

monitor

load_inputs

start_exec

done_pgm

start_status_rpt

done_status_rpt

txd (to PC RS232)

actuator outputs

addr data

inputs/sensors

16 1616

8 8 8

8 8 8

8
64

...

Fig. 15. Top-Level Control Unit Block Diagram

2.2.1 Major FSM. [Designed, Implemented, and Written by James Psota]

The control unit’s major FSM can be seen in Figure 16. The system completes an entire
loop of the control flow about 100 times a second, as dictated by an internal counter. The
system waits in the INIT state until the .01 second pulse is asserted. Then, it enters into
the LOAD INPUTS state. This state loads the inputs (e.g., from the sensors) so that they
stay constant throughout the entire current run of the program. It’s important that the
inputs remain constant throughout the program run for reasons that will be explained in
Section 2.2.5. After the inputs are registered, the system enters the EXEC PGM state,
which prompts the truth engine to begin processing the program stored in memory. When
the program has completed execution, the system transitions into the DONE PGM state.
Finally, the system enters the REPORT STATUS state, where it cycles through the inputs
and outputs and reports their current state via the RS232 port of a host PC.

16 ·

INIT

EXEC_

PGM

LOAD_

INPUTS

DONE_

PGM

REPORT_

STATUS

~go

go

~done_pgm

~done_status_rpt

reset

Fig. 16. Control Unit Major FSM

2.2.2 Instruction Format. [Designed, Implemented, and Written by James Psota]

The example shown in Figure 14 generally illustrated the types of actions and address-
ing the program needed to perform. Recall that the user needed to specify the following
information: which operands to use, which operation to perform on the operands, which
output value to set, which value to set the output value to. Additionally, the user needs to
be able to specify if the operands inputs or immediates. The resulting 64-bit instruction
format can be seen in Figure 17.

1 4 1 12 1 12 4 16 5 8

op

value1 value2

output

value
next_pc

cc outp
ut s

ig
nal

(re
se

rv
ed)

Fig. 17. 64-bit Instruction Format

The first field is called the cumulative condition field, which specifies if this instruction
depends on the result of one or more previous instructions. This feature was added because
each instruction can only specify a single operation, but there are times when the user may
want to execute an action if multiple conditions are true. For instance, the user may want

· 17

to turn on the lights at 18:00 if it’s Friday or Saturday, but not any other day. In this case,
the user would specify the two conditions in separate instructions, specify a null action
on the first instruction, and the desired action on the second instruction which has the
cumulative condition bit set. This feature substantially increases the scope of the system’s
programmability.

The next four bits specify the opcode. The available opcodes can be seen in Table I.
Note that the truth engine only executes boolean operations.

value operation
0 less than
1 greater than
2 equal
3 not equal
4 less than or equal
5 greater than or equal
6 (reserved)
7 (reserved)
8 (reserved)
9 (reserved)
10 (reserved)
11 (reserved)
12 (reserved)
13 zero (nop)
14 one (always true)
15 done pgm

Table I. Opcode Map

The next field specifies the first operand. The first bit specifies if the operand is an
immediate, in which case the remaining 12-bit value field is all used as an immediate. If
the top bit specifies that this operand is an input, the low four bits of the value field are
used as an index into a multiplexor which selects the appropriate input. The next 13 bits
are analogous to the first operand field, but specify the second operand field.

The next four bits specify which output should be asserted. The 16 subsequent bits
specify the value the output should be set to if the condition is true. 16 bits of output value
provide a wide range of options for the end user, such as sending IR signals or simply
specifying a wide range of output values.

Finally, the last used field of the instruction is the next pc field. This field specifies the
unconditional address of the instruction that should be executed after this one.

2.2.3 Program Format. [Designed, Implemented, and Written by James Psota]

The program is specified in the instruction memory, which is initialized by a memory
initialization file. As in any computer system, the truth engine processor expects programs
to be in a certain format. The processor will always start by executing the instruction at
address 0, and unconditionally follow the next pc fields of each instruction. The program
terminates when the processor sees a done pgm instruction. Thus, all programs must obey
the following two constraints:

18 ·

(1) The first instruction must exist at PC=0

(2) The last instruction must contain the done pgm instruction (opcode 15)

2.2.4 Compiler. [Designed, Implemented, and Written by James Psota]

The HAS comes with a reasonably user-friendly interface that allows users to create
programs in an intuitive way. The interface, which runs any host PC capable of executing
a Perl script, steps the user through a series of simple questions. The user’s input is passed
to a compiler which in turn packages up 64-bit instruction words that implement the user’s
request. The resulting output of the program is a memory initialization file that is used to
program the instruction memory. A screenshot of the compiler can be seen in Figure 18.

Fig. 18. Compiler Interface

2.2.5 Truth Engine Processor. [Designed, Implemented, and Written by James Psota]

The truth engine accounts for a large amount of the control unit’s complexity. As men-
tioned above, it has the job of executing the program using sensor inputs as operands, and
writing outputs to the actuator layer. Figure 19 shows the top-level datapath design.

The 64-bit instruction is read in from the instruction memory and placed into a regis-
ter. The instruction completely dictates the program’s operation – which operands to use,
which operation to execute, which instruction to execute next, etc. The opcode field is
passed into a decode module, which simply reports to the ALU which operation it should
execute, and produces the done pgm signal if a done pgm opcode is seen. The value fields
are used to either select which sensor input to choose, or to specify which value immediate
to use. The values are passed to the ALU, which performs the appropriate operation. The
result of the ALU operation (either a 1 or a 0) is used to enable loading of the appropriate
actuator register. The output signal field is fed to a demultiplexor which asserts exactly one
of 16 enable signals. This signal is another one of the few signals used to enable loading
of the actuator registers. The top bit of the instruction along with the alu result is used to
determine the value to write to the cumulative condition register, which keeps track of pre-
vious alu results so that multiple condition results are stored. This ultimately implements
the cumulative condition feature described above, and is used in the enable logic that loads
the actuator registers.

· 19

decode

...

sensor inputs
8 8 8

actuator outputs

16 16 16

...

done_pgm
alufn

next_pc

cumulative

condition

register

actuator

select

(s
a

m
e

 f
o

r
se

co
n

d
 in

p
u

t)

PC INST

...

4

648

1

4

16

4

1
12

8

12

4

64

8

ALU

[63]

[49..46]

[58]

[57..46]

[7..0]

[62..59]

[28..13]

[32..29]

actuator

registers

actuator

select

output

value
alu_result

sensor A sel

signal1 imm

signal1 sel

Fig. 19. Truth Engine Processor Block Diagram

2.2.6 Status Monitor: Hardware. [Designed, Implemented, and Written by James Psota]

The status monitor displays the current values of the system’s inputs and outputs. This
feature provides the user with a view of current conditions in the home environment, such
as which lights are on and what the temperature is. It is also a useful tool in helping the
user program and test the system. The system interacts with a host PC to display the status.
The FPGA sends the data to the PC via the RS232 serial interface

As can be seen in Figure 16, the status is reported after the program has completed
execution. Note that each sensor input is 1 byte wide, and each actuator output is 2 bytes
wide. As the serial interface module1 accepts 1 byte of data at a time, the status monitor
has to cycle through the data, sending one byte after another. As can be seen in Figure
20, the values of each of the signals are sent first, and the values of the actuators are sent
second. Note that the actuators’ values are sent in two halves – the low order byte is sent
first, and the high order byte is sent second.

1provided by HyungBin Son

20 ·

...
...

reset

WAIT

SENSOR0

SENSOR1

ACT0_0ACT0_1

ACT15_1

DONE

~done_trans

~done_trans

~done_trans
~done_trans

~done_trans

~start_status

Fig. 20. Status Monitor FSM

2.2.7 Status Monitor: Software. [Designed, Implemented, and Written by Javier Castro]

The software of the status monitor was implemented using the Java Swing library and the
javax.comm package. The application consists of a JFrame containing a JTextArea which
is updated periodically (approximately once per second) via input over a serial cable con-
nection (See Figure 21). The data transmitted to the application arrives in a prearranged
manner. That is that the bytes are sent in an order which is specified to arrive in a prede-
termined order. The first 11 bytes to arrive are the values of the sensor inputs. Next are
the 16 bytes from the eight actuators. The data is parsed by the status monitor program,
and displayed on the screen in a format that is human friendly. For example, rather than
a hexadecimal number, the user sees the temperature in degrees Fahrenheit. The state of
lights throughout the home is decoded from 0, 1, 2, or 3 to off, dim, medium, or bright. By
running this program on a Host PC, a user can check on the status of the system without
having to run all over her home to see whether the sprinkler is on in the front yard, or to
check if the lights in the bathroom are off.

· 21

Fig. 21. Status Monitor Screen Shot

2.3 Actuator Layer

[Written by Javier Castro]

In order for the Home Automation System to perform its function and be useful to a
home owner, it needs to interact with real world systems. Examples of such systems are
lights, heating and A/C units, and sprinkler systems. A user needs to have the ability to
tell the HAS that the sprinkler system should be turned on between 5:00am and 6:00am
every Tuesday and Thursday. In order to realize this command, the Home Automation
System has actuators which format output from the control layer to a form that household
systems can understand. If a user of the home automation system has placed the system

22 ·

into vacation mode, and the television is scheduled to turn on at 7:30pm, the control layer
simply outputs the 6 bit power signal command to an infrared transmitter module that is
connected to the system. The transmitter module then takes the address, 0x0C, and outputs
the corresponding infrared signal that results in a TV actually turning on.

Due to a pin limitation on the FPGA’s, there is a HAS status monitor, implemented in
Java, that runs on a host computer. The state of the HAS’s actuators is transmitted to the
host computer via serial cable connection so that the data may be formatted and displayed
on the monitor of the host computer.

3. TESTING

[Written by Javier Castro and James Psota]

Due to the modular nature of the design of the HAS, it was straight forward to test each
module individually. In doing so, bugs were easy to spot, locate, and fix. Thorough sim-
ulation testing was performed on each module before being programmed onto an FPGA.
Then, once the simulations ran according to specification, an FPGA was programmed with
the architecture, and more component testing took place. The biggest problem in testing
was due to faulty HEX displays and burned out pins on the lab kits.

3.1 IR Module

The IR Module had a tricky bug which was hard to locate, due to successful simulations.
The module simulated according to what was expected to occur given an input that timed
out (did not adhere to RC-5 encoding), and did would successfully read a properly formed
signal. The problem was, that if allowed to start up normally, it would enter a state where
the internal reset signal to the timer was constantly asserted. This was found by progres-
sively showing more and more signals in the simulator, and by starting the input signal
which was received from the IR receiver a little bit later. The problem was solved by plac-
ing a level-to-pulse module before the reset signal to left the IR Decoding FSM so that
the IR Timer would only receive a pulse, and therefore be allowed to start upon receiving
a new start pulse. This solved the grid lock issue. In order to prove that the IR module
was in fact decoding IR signals, the output from the IR Module was displayed on the HEX
displays of the FPGA lab kits and simultaneously compared to an oscilloscope reading of
the pins on the IR module. Since the address bits of the waveforms matched the output
shown on the HEX displays, it was verified that the IR Module performed properly and
according to its specification.

3.2 Temperature Module

Some experimentation was involved in testing the Temperature Module. In order to en-
sure that the thermistor-voltage divider was working properly, the voltage across the non-
variable resistor was measured using an oscilloscope. Once it was verified that the voltage
was as expected, the FPGA was programmed with the digital portion of the Temperature
Module. The AD670 was wired up with its controls from the FPGA, appropriate ground
and power signals were supplied to its formatting pins, and the voltage from the voltage
divider was fed to the A/D. Being wary of a load resistance across the leads of the AD670,
the voltage was, again, measured with an oscilloscope. It was discovered at this point, that
the load resistance of the AD670 was indeed something to take into consideration as it
was on the same magnitude as the resistor that the voltage was being divided across. After

· 23

much thought, an LM741 Op Amp was placed in a voltage follower configuration, so that
the voltage of the output would match that of the inputs. This idea worked, and the Op Amp
was included as a permanent part of the Temperature Module. Once this issue had been
addressed, physical testing of the digital part of the Temperature module was performed.
This involved having the FPGA display the output from the Temperature Module on its
HEX displays by assigning the output pins appropriately. Since a sample is taken every
second, the display was steady and displayed the ambient temperature in hexadecimal. If
the thermistor was heated up, the temperature would rise; if it was cooled down, tested by
grounding the V+ lead, the temperature bottomed out to 50oF.

3.3 Light Module

Since most of the Light Module was implemented by reusing parts from the Temperature
Module, most of the testing was completed when the Temperature module was created.
All that was left to test, at this point, was that the conversion module performed adequately
enough, for the purposes of the Truth Engine located in the control layer.

3.4 Control Layer

The control layer was thoroughly tested in simulation incrementally. A small subset of the
control system was built first to work out details as the design was being finalized. For
instance, the initial system only had one sensor input, one actuator output, one opcode, ex-
ecuting one instruction. After this minimal system was debugged, more and more features
and components were added until the final desired system was realized.

After thorough simulation testing, the control layer logic was placed on an FPGA for
field testing. The first test involved the execution of a one-instruction program. The pro-
gram would take the data from one sensor as input, and output the appropriate result to the
appropriate actuator. Next, more and more instructions were added to the simple program
so that the full capabilities of the truth engine could be tested. At this point, actuators
were asserted or not asserted by turning the LEDs of the FPGA lab kits on or off. Once
a multi-instruction program could be executed, with dependence on several inputs, testing
was complete and ready for integration.

3.5 Actuator Layer

Since the results of the actuator layer are output over a serial cable. By connecting this
cable to a host computer, where a Java program resides, the information being sent over
the cable could be displayed onto the monitor for simple debugging. One of the problems
that occurred while implementing this process was that the information being sent over the
serial cable, whenever the lab kit was initially turned on, was junk. The method discovered
for initiating the HAS/Host Computer communication was to start up the HAS, place it into
the reset state, and then initiate the program on the Host Computer. At this point, whenever
the HAS was taken out of the reset state, information would be transmitted in an expected
manner to the program running on the Host Computer, and as a result, displayed on the
computer monitor in a decipherable manner. A second problem which was encounter,
while interfacing with the Java program, was that the screen was flickering. This was the
result of updating the screen too often. In order to solve this problem, the period at which
data was sent over the serial cable was slowed down, and the amount of times that the
Java program would update the screen was slowed down. After these changes, the monitor
would display new data about once a second.

24 ·

3.6 Integration Testing

Fig. 22. Lab Kit Integration Testing Setup

Once the above modules were thoroughly testing both in hardware and software, the sys-
tem was gradually assembled. Because the system’s components were thoroughly tested,
integrating the entire system proved to be much simpler than one would anticipate. When
the two lab kits were connected as shown in Figure 22, the entire system simply worked on
the first try. The sensor inputs showed up on the status monitor screen, and were updated in
real-time as desired. Furthermore, relatively complicated programs were run and produced
proper output.

4. CONCLUSION

[Written by Javier Castro]

By designing the Home Automation System in a modular manner, it was possible to
create a system that was complete with sensors, running program, and status monitor in
an incremental fashion. Building the system in this way made finding bugs early on an
easy task to accomplish. After completing a group project such as the HAS, it becomes
apparent that a strong emphasis on hierarchy and modularity early in the design process

· 25

results in a clear specification. This specification allows the implementers of the system
to keep a clear idea of what tasks need to be accomplished and never get confused by
the complexity of the task at hand. If, while constructing the system, any part failed to
be realized, it was possible to work around the problem and still manage to implement a
system that was working towards the final goal. The lesson learned is that more time spent
designing results in less time wondering what went wrong with the implementation.

Acknowledgements

The authors would like to sincerely thank the 6.111 course staff for being a tremendously
supportive resource throughout the course of this project. In particular, many of Chris
Terman’s design suggestions ended up making their way into the final design. Likewise,
HyungBin Son’s RS232 interface and guidance throughout the project was invaluable, and
Colin Weltin-Wu’s support throughout the project was always helpful and is much appre-
ciated.

