Asteroids

6.111 Final Project – Fall 2005
Shield Xiao & James Verrill
Introduction

- Asteroids?
 - Classic Video Game
 - First Version appeared around 1978
 - Biggest Selling Game of its time(!)
 - Features vector graphics

Asteroids Arcade (1978)

Asteroids Deluxe (1979)
Project Overview

Aims

1. Create a hardware system which draws vectors onto the screen
2. Create a Beta Processor to run programs to utilise vector drawing hardware
3. Using the above: Create a version of Asteroids
4. Add features to the basic asteroids game (e.g. sound effects, scoring)
Project Overview

Debounce

BETA

CPU

BRAM

Line Drawer

x₀

y₀

y₁-y₀

slope

x

y

Double Buffered Memory

Memory Access Unit

XVGA

LCD

Pixel

VSync

HCount

VCount

1

1

1

1

10

9

9

20

20

10

9

9

20
CPU

- **Functions**
 - Run compiled programs to generate outputs to vector drawing system
 - Eventually run Asteroids game
 - Processing User Inputs
 - Moving Asteroids and Ship
 - Detecting Collisions

- **Implementation**
 - Existing Beta Definition
 - 32 bit Multiply and 32 bit Divide

- **Outputs**
 - Left Most Point on a Vector \((x_0, y_0)\)
 - Slope of Vector (as decimal)
 - End y co-ordinate of Line
CPU (2)

- **Considerations**
 - **Speed**
 - Movement of each asteroid will require
 - 72 multiplies (rotation of co-ordinates and translation in space)
 - 16 subtracts and 8 divides (calculation of slopes)
 - Taking: 248 cycles
 - Detection Collisions of each asteroid will require
 - 24 subtract and compare operations (4 per bullet and 4 per ship)
 - Taking 48 cycles
 - Total: 17760 cycles per frame
 - Movement of ship and bullets will be inconsequential in comparison
Line Drawer

- **Function**
 - Implements Bresenham Line Drawing
 - Calculates which pixels on/off for given line

- **Outputs**
 - Pixels that exist on given line

- **Considerations**
 - **Speed**
 - Possibility of drawing ~500 complete diagonal lines the length of screen
 - Maximum 1024 cycles to output all pixels for each line
 - Maximum of 512000 cycles
 - Have 541632 cycles (running at 32.5MHz)
 - Reality: lines are much shorter than screen
Frame Generator

- **Function**
 - Generate a pixel representation of the next frame based upon inputted pixel values
 - Output to the VGA module whether a pixel is black or white given a demanded pixel

- **Considerations**
 - **Storage of Frames**
 - Need ability to write to next frame and read from current frame
 - Implement using Double Buffered Memory to allow simultaneous read and write operations to different memory locations
 - Store next and current frames separately in memory
VGA Module

- **Function**
 - Request information about each pixel in the screen
 - Transform pixel information into appropriate signals
 - Transmit to the LCD screen
 - Generate Count and Sync signals to control other modules
Questions?

(not difficult ones)