Tilting Maze Game

Matt Fishburn
Hongyi Hu

TA: Jae Lee
Game Overview

- Tilting the Board Moves the Ball

- Objects on Board:
 - Walls
 - Ball
 - Traps
 - Destination
Source Control / Documentation

Tilting Maze Game

module game_state(reset, clk_27, hz_60, x_acc, y_acc, mask_computed, x, y, vx, vy, inHole, targetReached, new_x, new_y, new_vx, new_vy, level);
 // global input signals
 input reset;
 input clk_27;
 input hz_60;
 // clock signal running at 27 Hz
 // 60 Hz signal to indicate next frame

 // physics input signals
 input signed [31:0] x_acc, y_acc;
 // x and y acceleration data from physics module

 // mask input signals
 input mask_computed;

 // collision input detection signals
 input [11:0] x, y;
 input signed [31:0] vx, vy;
 // x and y position of ball
 // x and y velocity of ball
 input inHole;
 input targetReached;

 // Did the ball fall into a hole in the last time step?

 // outputs to collision detection unit
 output [11:0] new_x, new_y;
 output signed [31:0] new_vx, new_vy;
 // new x and y position of ball
 // new x and y velocity of ball
 output [2:0] level;

 // current level number

 // current level number

 always @(posedge clk_27) begin
 // check if the mask has been computed

 end
endmodule
External Sensor Interfaces

- Two Gyros & Three Accelerometers
 - 0 to 5 V output
 - 10-200 Hz sampling
- Two 3-Channel ADCs
- SPI Synchronizer Module
FSM
Game State

• Stores and updates the state of the game

• Inputs:
 – Acceleration in x and y axis (signed fractionals)
 – New ball position and velocity, game state data

• Outputs:
 – Current ball position and updated velocity
Collision Detection
Collision Detection

• Moves the ball and checks for collisions

• Inputs:
 – Current position and velocity of ball
 – Collision data from CD mask

• Outputs:
 – New position and velocity of ball
 – Collision query to CD mask
Collision Detection Process

- Check four sides and center of ball
- Set ball's velocity along an axis to 0 if the ball will collide with a wall
- Reset level if ball's center is over a trap hole
- Move on to next level if ball's center is over a target hole
- Otherwise move the ball to its new position and repeat
Collision Detection Mask
Collision Detection Mask

- Stores location information for every obstacle in current level

- Inputs
 - Collision query from Collision Detection module
 - Level data from Memory Interface

- Outputs
 - Collision data
 - Level query to Memory Interface

- Level Mask similar
Memory Interface

• Needs to communicate with both collision mask and level mask

• What is stored?
 – Type of each 16 x 16 pixel block stored in three bits
 – Location in memory signifies position on map
 – Each level takes up 4Kb of memory
Draw and XVGA Units

• Receives ball information from the FSM
• For every pixel:
 – Sees if the ball should be drawn
 – Checks with level mask if a wall/hole should be drawn
• Sends appropriate color for every pixel to the screen