6.111 Project: Digital Tuner

Roshni Cooper, Linda Fang
Introduction

• Three modules
 – Record
 • Records a tone from the microphone
 – Playback
 • Plays back the last recorded tone
 • Determines the frequency, note number, and music staff position
 – Playtone
 • Plays back a pre-recorded sample of a tone defined by the user, in one of three ways:
 – Switches
 – Mouse
 – Keyboard

• Cool because
 – Music is cool
 – Being in tune is cool.
Block Diagram: Linda
Important Designs

- Fourier Transform
 - Using the Xilinx Fast Fourier Transform
 - Calls for the last recorded tone
 - Finds the frequency of the tone
 - Used to determine the pitch of the note

- Additions
 - Simultaneous notes (chords)
 - Strings of notes
 - Tempo
 - User input: note they want, so we can filter out other noise

- Video
 - Displays:
 - Music staff
 - Mouse cursor for mouse inputs
 - Outputs:
 - Music note on the staff
 - Note number
 - Frequency of the tone
 - Used for playback and playtone
Testing and Debugging

• Tones
 – Simulations
 • Testing if the Fourier Transfers are working properly
 – Matlab
 • Using Matlab generated pure tones, see if the output actually corresponds to the input
 – Logic Analyzer
 • Using the logic analyzer to look at the output and see if we’re getting the right output

• Video
 – Simulation
 • Playing around with it
 – Mouse input testing
 • Using Matlab to verify
 – Logic Analyzer
 • Using the logic analyzer to test that the video output corresponds to the note that is being played
Conclusion

• We should have a user-friendly tuner that helps users test their instruments for notes ranging from 27.5Hz to 4.186kHz.
 – It will determine frequencies of inputted tones (and play them back so you can hear yourself).
 – It will playback user selected tones so you can hear what you’re supposed to sound like.
• Any Questions?