Bacteria "Colonalyzer"

Design Review MIT 6.111 Final Project

Yaw Anku

MIT Department of Electrical Engineering and Computer Science

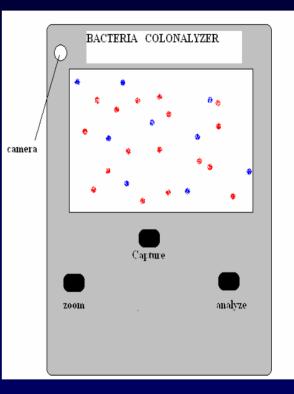
November 15, 2006

Outline

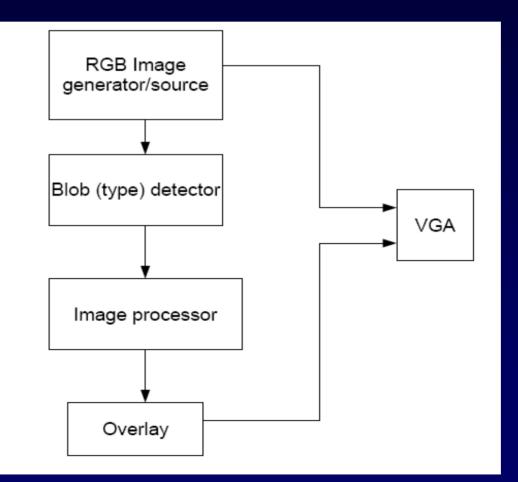
- Overview : problem & objective
- Design Architecture
- Discussion of major modules
- Timeline

Problem

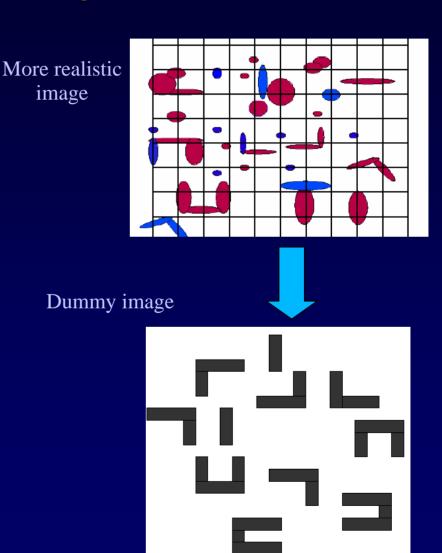
- Water testing in remote location
 - Create bacteria culture on filter membrane from water samples
 - Count bacteria colonies after specified period ~ 24hrs
 - E.coli = blue count
 - Coliforms (other bacteria) = red count.
 - Example analysis for drinking water
 - No bacteria \rightarrow truly safe to drink
 - E. coli < 10 \rightarrow okay
 - E. coli $< 50 \rightarrow$ acceptable, but not good


Current process involves manual counting – slow and prone to error

Objective


- Automate counting process by digital analysis of scanned culture membrane image
 - Increase throughput and hence time to providing water purification advice/ solution
 - Provide more accurate bacteria concentration results

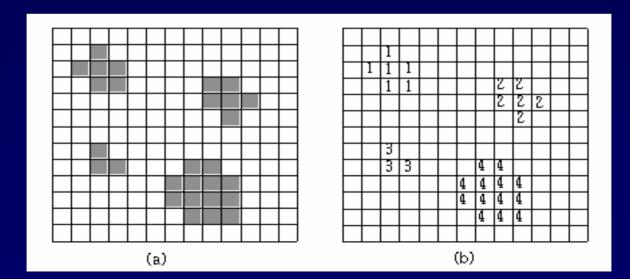
Handheld scanner and analyzer tool


Design Architecture

• High Level System Block Diagram

Discussion of major modules

- RGB image generator/source
 - Input image from scanner/camera
 - Dummy image for purposes of testing blob detection algorithm on different shapes and orientations


Discussion of major modules

- Blob (type) detector
 - Implementation iteration one : generates black and white binary image from input image
 - Implementation iteration two: distinguish between different image types/colors – blue vs. red
 - Operation
 - Sets threshold, T
 - Binary \rightarrow $F_T[i, j] = \begin{cases} 1 & \text{if } F[i, j] \ge T \\ 0 & otherwise. \end{cases}$
 - Different colors \rightarrow $F_T[i, j] = \begin{cases} 1 & \text{if } T_1 \leq F[i, j] \leq T_2 \\ 0 & \text{otherwise.} \end{cases}$

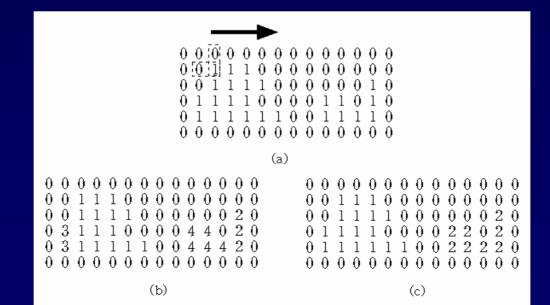
Discussion of major Modules

• Image Processor

- Utilizes a 'connected component labelling algorithm to detect separate blobs – all connected components assigned unique label (1, 2, 3...)
- Count number of sets of labelled components

Sequential Component labeling algorithm

1. Scan the image from left to right and top to bottom.


2. If the pixel is 1, then

- (a) If only one of its upper or left neighbors has a label, then copy the label.
- (b) If both have the same label, then copy the same label.
- (c) If both have different labels, then copy the upper pixel's label and enter the labels in an equivalence table as equivalent labels.
- (d) Otherwise assign a new label to this pixel and enter this label in the equivalence table.

Sequential Component labeling continued

3. If there are more pixels to consider, then go to step 2.

- 4. Find the lowest label for each equivalent set in the equivalence table.
- 5. Scan the picture (second scan). Replace each label by the lowest label in its equivalent set.

Project Timeline

		PROJECT TIME SCHEDULE									
			NI					5			
		November						December			
Construction		3	8	13	18	22	28	5	8	11	
VGA Display											
Image Overlay											
RGB image generator											
Image Processor											
Image Processor FSM											
Testing & Debugging											
Module Testing											
System Testing											
Interface ext. devices											
			m			÷		t		·····	
		Project Proposal	Block diagram conference	Design presentation		Project checkoff list	Oral report	Final Oral Report		Final Report and Project Checkoff	

Component labelling Reference: web.cecs.pdx.edu/~mperkows/CLASS_479/

Possible extensions If there's time

- Implement detection/distinction between different blob colors
- Allow user input to select region on image for analysis; using a stylus