
Alexander Valys
6.111 Final Project
11/1/2006

PROJECT PROPOSAL

(full block diagram on last page)

SUMMARY
The system I will be building is a GPS data logger and visualization system. The data logging and visu-
alization components will be implemented separately - the data logger on a Digilent Nexys board, and the
visualization system on the 6.111 labkit.

The data logger will write a sequence of position fixes to a removable Flash ROM module. The visualiza-
tion system will use that module as input, and produce a number of visualizations of the logged position
information, such as:
 Altitude vs. time
 Velocity vs. time
 2D Position plus velocity as color
 2D Position plus altitude (3D)
 2D Position plus velocity (3D)
 2D Position plus altitude plus velocity as color

Additional visualizations will be added as time permits. All visualizations will support zooming, panning,
and (for those rendered in 3D) 3-axis rotation. User interaction will be through a PS/2 wheelmouse.

The data logging component will use a SiRF StarIII GPS receiver chip to obtain position information. The
StarIII provides position fixes once a second over a TTL-level RS232 interface. Passing through a num-
ber of parsing, encoding and control modules, these fixes are written to a 16 megabit serial Flash ROM.
Each fix consists of 4 32-bit values (latitude, longitude, altitude, and x/y velocity), making for 128 bits per
fix. At one fix per second, this amounts to approximately 35 hours of recording time, which is certainly
ample.

The visualization component can be divided into three major parts. The first part is simply the reverse of
the mobile data logger, reading position fixes from the Flash ROM and decoding them into a sequence of
latitude/longitude/altitude/velocity values.

The second part is made up of the visualization modules. These are responsible for taking the sequence
of position fixes and issuing commands to the rendering subsystem (see below) that draw a particular
visualization of the data on a monitor. They have access to data packets from the PS/2 mouse, and are
responsible for interpreting these packets as rotate/translate/zoom commands. Essentially, these are just
FSMs, that move through a fixed procession of states: issuing the commands to set up the background,
draw the axis, draw the labels, draw some summary information, and then draw the actual data plots.

The third part, the rendering subsystem, is really the core of the project. It is responsible for performing
the coordinate transformations that map latitude, longitude, altitude, velocity and so forth into 2D coordi-
nates on the screen, as well as the actual drawing of graphics on the screen.

The two ZBT RAMs on the labkit are used as video RAM. At any given point, one RAM is designated as
‘active’, and the image displayed on the monitor is read from that. All rendering operations draw to the
inactive RAM. Once a frame is fully rendered, the RAMs switch positions during the vertical blanking in-
terval.

Rendering is performed in a 3-stage pseudo-
pipeline, with the stages termed ‘Transformation’,
‘Drawing’ and ‘Coloring’.
The transformation stage is responsible for coordi-
nate transformation, taking latitudes, longitudes and
altitudes (or velocities), and transforming them into
screen coordinates based on the current view limits
and orientation. This stage may be bypassed in or-
der to draw directly to a given set of screen coordi-
nates.

The drawing stage provides abstractions that han-
dle specific tasks of actually drawing to the screen:
rectangle filling, line drawing, and text drawing
(more may be added). As input, it takes the screen
coordinates produced by the first stage. In general,
a single command given to the drawing stage will be
transformed into multiple commands for the subse-
quent (coloring) stage - drawing a 100-pixel line will
require coloring 100 pixels.

The third and final stage, coloring, is responsible for
actually interacting with the inactive ZBT RAM, and
writing color values to specific pixels. It supports
two methods of drawing: standard overwriting, in
which a pixel completely overwrites whatever was in
its place before, and alpha transparency, in which the color
of the new pixel is blended with color of the existing pixel at
its location to produce the final value.

The pipeline is controlled using a serial, undirectional bus that carries ‘rendering commands’. These are
128-bit values (the length may be changed) specifying an operation for each stage to perform, and a set
of data to operate on. The model is similar to processor bytecode. The exact form of the commands has
not been established, but one can imagine having three bits controlling the output of each stage, with the
remaining 119 bits for data. For the first stage, 000 might indicate a NOOP or bypass (performing no
transformation), 001 might indicate a 2D transformation for four values, 010 might indicate a 3D transfor-
mation for six values, 100 might indicate a scaling of the 2D view dimensions, and so forth. For the sec-
ond stage, 001 might indicate text drawing, 010 rectangle filling, etc.

Commands move through the pipeline sequentially, with the output of each stage being the input of the
following stage. Stages may modify the data in commands (i.e. transforming coordinates), or change a
command into multiple subcommands (for instance, a line drawing command will be transformed into a
number of pixel-coloring commands).

While most commands will result in data being written to the VRAM, some will not. For instance, the 2D
and 3D transforms accept commands that set the parameters of the view being rendered. These com-
mands are ignored by the modules in the drawing and coloring stages.

The advance signal ties together every component in the pipeline. The advance output of every compo-
nent is AND’d together, and returned to the components as an input. The pipeline only progresses when
advance is high - if any component brings it low, it stops. This is to allow for the fact that the amount of
time the various pipeline stages will take is indeterminate: drawing a 1000-pixel line will take less time
than a 10-pixel one. Thus, the drawing stage (for example) can temporarily halt the rest of the pipeline
while it issues the appropriate coloring commands.

GPS Receiver
(SiRF StarIII)

RS232 InputTx

Rx RS232
Output

Initializer

d
a
ta

 /
 9

SiRF
Message

Parser

data / 9

available

Data Log
Encoder fix / 160

write

data / 8

erase

Serial Flash ROM
Output

Serial Flash
(Micron M25P16)

Clock and Reset are global signals

S
D

I

S
E

L

Mobile Data Logger

Serial Flash
(Micron M25P16)

Serial Flash ROM
Input

S
E

L

S
D

I

S
D

O

available

data / 8
Data Log
Decoder

S
D

O

fix = {
latitude / 32

longitude / 32
altitude / 32

timestamp / 32
velocity / 32

}

Fix Queue

next

next

available

fix / 129

Rendering
Manager

restart

fix is as above, but w/o timestamp,
an with extra bit indicating EOF

fi
x
 /
 1

2
9

e
m

p
ty

re
a
d

IMPS/2 Decoder

a
v
a
ila

b
le

lm
r/

3

x
/8

y
/8 z
/8

p
s
/2

 d
a
ta

p
s
/2

 c
lk

active / 4

command/128

fix / 129

available

command is a tristate bus

Altitude vs. time

Velocity vs. time

2D Position

2D Position +
Altitude (3D)

2D Position +
Velocity (3D)

2D Transform

Null Transform

3D Transform

command/136

Rectangle Fill

Line Draw

Text Draw

VRAM Manager

all inputs to advance are ANDed together
for entire signal, which is bidirectional

advance

advance

command/136

ZBT-control lines

VRAM 1 (ZBT)

VRAM 2 (ZBT)

ZBT-C

ZBT-C

VGA Output

Z
B

T
-C

h
s
y
n
c

v
s
y
n
c

rg
b
/2

4

Clock and Reset are global signals

swap

swapped

Data Display

s
h
u
td

o
w

nre
a
d
y

ready

P
ix

e
l

F
ill

Figure 1: rendering pipeline / subsystem block
diagram

Note that the pipeline is not constantly running: the active visualization module is responsible for deter-
mining whether the currently-rendered image stored in the active VRAM should be replaced. If the user
does not touch the mouse or otherwise adjust the view parameters, the pipeline will be idle (that is, exe-
cuting NOOPS).

The visualization modules and rendering pipeline are coordinated through the rendering manager mod-
ule. This is essentially a switch, that determines which visualization module is active, and also manages
the behavior of the video RAM and position-fix-reading modules on behalf of the visualizations.

The rendering pipeline will be the target of the majority of any additional improvements that are added to
the system once the basic functionality is completed: support for 3D surfaces, textures, improved line-
drawing, anti-aliasing, and so forth.

MOBILE DATA LOGGER MODULE DESCRIPTIONS

SiRF StarIII GPS Receiver
This is a self-contained GPS receiver chip. Once it has established a satellite lock, it provides position
and status information every second over an RS232 interface. The information provided includes latitude,
longitude, altitude, velocity, heading, the current time, the number of satellites in view, and so forth.

Communication with the StarIII over RS232 runs at 9600 baud.

StarIII Initializer
The StarIII’s behavior is mostly automatic, however it does require some initial configuration (setting the
update period, communication mode, and so forth). The initializer module performs this configuration
over the RS232 interface in the cycles following a reset.

This module will be tested live against the StarIII chip directly, in combination with the RS232 output mod-
ule.

RS232 Input
The RS232 input module handles the low-level details of receiving data over RS232. At every clock cy-
cle, it produces a nine-bit output. The first bit indicates whether there is a valid byte of data available, and
the remaining eight bits comprise that byte.

This module will be tested live, against the StarIII chip.

RS232 Output
The RS232 output module handles the low-level details of sending data over RS232. It takes a nine-bit
input: the first bit indicates that the remaining eight bits contain a byte that should be sent. The ready
output indicates that the module is capable of receiving bytes to send (i.e. it is not in the process of send-
ing a byte already).

This module will be tested live, against the StarIII chip, in combination with the initializer.

SiRF Message Parser
The message parser module receives messages from the SiRF chip byte-by-byte through the RS232
module, identifies the messages containing position information, and parses them. When it has a mes-
sage available of the desired type, it raises available high and places the message’s longitude, latitude,
altitude, timestamp, and velocity values on the fix output. Note that the contents of fix are subject to
change.

This module will be tested in simulation, in isolation.

Data Log Encoder
The data log encoder module takes position fixes (arriving once a second) from the message parser, and
converts them into log messages to store in the Flash ROM. It is also responsible for erasing the ROM
(through the ROM controller) at initialization, and writing a termination record to the ROM before shut-
down.

The data log format has not been determined, but it will likely consist of an initialization record (containing
a magic number and initial timestamp), plus an indefinite number of data records, plus a termination re-
cord (containing another magic number).

The data records will store latitude, longitude, altitude, and velocity. Each value is 4 bytes long, making
for a total data record length of 16 bytes, or 128 bits. Using a 16 megabit Flash ROM, this leaves room
for 125,000 samples, or (at one sample per second) approximately 35 hours of logged data.

This module will be tested in simulation, in isolation.

Flash ROM Output Controller
The ROM controller is responsible for writing data to the Flash ROM module. The ROM is a serial device,
with two inputs (clock and serial-in), and one output (serial-out).

The ROM controller raises ready high when it is able to receive commands (i.e. when it is not performing
some other action). If erase is high at the rising edge of the clock, it will erase the ROM. If write is high, it
will write the bye on the data input to the next available address (starting at 0 and incrementing automati-
cally).

To save energy, the controller may cache write requests and perform them in blocks, leaving the ROM in
power-save mode when it is not being written to.

This module will be tested live against the Flash ROM module, using a custom circuit, alongside the Flash
ROM Input Controller (see below).

Serial Flash ROM
The serial flash module is a Micron M25P16. It has a 16 megabit capacity. All communication is per-
formed over a serial (SPI) interface, at up to 50 MHz. The interface consists of three signals: clock, data
in, and data out.

DATA VISUALIZATION SYSTEM MODULE DESCRIPTIONS

Serial Flash ROM
 This is the same module described above (Micron P25M16).

Flash ROM Input Controller
The ROM input controller module is responsible for reading data from the serial Flash ROM. It presents
data one byte at a time, raising available high when there is a byte available, and placing the byte’s value
on the data line. When the next signal is driven high, it reads the byte at the next address. The restart
signal forces it to begin reading at address zero.

This module will be tested live, against the Flash ROM chip, in combination with the ROM Output control-
ler (see above).

Data Log Decoder
The data log decoder is responsible for parsing the bytes it receives from the ROM input controller into
position fixes. Each fix is a 129-bit value, consisting of the following values (listed MSB first):

 1 bit: EOF indicator. If 1, indicates that the previous fix was the last recorded. All other values in
the fix are undefined if this bit is 1.
 32 bits: Latitude
 32 bits: Longitude
 32 bits: Altitude
 32 bits: Velocity

The available output indicates whether a fix is available. The next input indicates whether to read the
next fix. The restart input indicates that reading is restarting from the beginning of the ROM.

The decoder will be tested in simulation, in isolation.

Fix Queue
The fix queue maintains a FIFO buffer of position fixes, in order to maintain a constant supply of them for
the rendering modules. The optimal size of the queue will be determined experimentally, but a length 128
fixes will be used initially, making for a total queue size of 16 kilobits, or just under one BRAM on the
Virtex-II.

The empty output indicates that the queue is empty, and the read input requests that a new fix be popped
off the queue. Fix values are placed on the fix output.

The queue will be tested in simulation, in isolation.

IMPS/2 Decoder
This module is responsible for communicating with an attached mouse via the Intellimouse PS/2 protocol,
and providing data packets indicating mouse movement to the rest of the system. The available output
indicates that a packet is available, and each packet consists of lmr, a 3-bit signal indicating whether the
left, middle or right mouse buttons are pressed, as well as 8-bit x, y, and z signals indicating the move-
ment of mouse and mouse wheel.

The module will be tested live, with an actual mouse.

Visualization Modules
These modules will be responsible for issuing commands to the rendering pipeline that draw their respec-
tive visualization to the screen. Very little computation takes places in these, as that is handled by the
transform stage of the pipeline.

The 4-bit active signal indicates which module is active - each module recognizes only one active value,
and remains idle if it is not seen.

As input, the modules take logged position fixes from the rendering manager, as well as mouse data
packets from the IMPS/2 decoder. The modules are responsible for notifying the rendering manager via
pipeline commands when they wish to begin rendering a scene (because the user has changed the view
parameters), and when they have finished.

Optimally, the modules will output one command per clock cycle. Commands that are always issued (i.e.
to set up axes and labeling) can be stored in a ROM.

These modules will be tested live, integrated into the whole system.

Rendering Manager
The rendering manager ties the rendering subsystem together, as you might expect. It can be considered
part of the pipeline itself, because it responds to commands.

Essentially, it’s just a switch, routing signals from the active visualization module to the pipeline and the fix
queue. It is also responsible for selecting the active visualization module, which at the moment will be
performed based on mouse movement.

The two commands it responds to are ‘Re-render’, which is issued by a visualization module when it
wants to re-render a scene, and ‘Render complete’, which is issued by a visualization module when it has
finished rendering. Upon receiving a re-render signal, the rendering manager raises restart high in order
to begin restart reading fixes from the Flash ROM. Upon receiving a render complete signal, it raises
swap high to tell the VRAM manager to switch the active and rendering memories.

It will be tested in simulation, in isolation.

2D and 3D Transform
The transform modules transform real-world coordinates (latitude and longitude, plus altitude or velocity)
into screen (pixel) coordinates. This will involve a fair amount of numerical computation (multiplication,
division, matrix multiplication, etc.). They will need to support transforming four values at once, to allow
for the rectangle fill operation (x, y, height, and width). Their performance is not critical, but the faster they
can operate, the faster the screen can be redrawn.

The dimensions that the modules are transforming to (i.e. the range of latitudes and longitudes that the
screen covers) can be set by issuing a command.

They will be tested in simulation, in isolation.

Null Transform
The null transform module performs no transformation between coordinates: it simply relays the values it
receives to the next stage in the pipeline. This allows the visualization modules to draw to absolute pixel
locations directly.

It will be tested in simulation, in isolation.

Rectangle Fill
The rectangle fill module fills a specified rectangle on the screen with a given color, by issuing pixel fill
commands.

It will be tested in simulation, in isolation.

Line Draw
The line draw module draws a line on the screen, of a specified color, between two pixel coordinates.
The rasterization algorithm that will be used has not been determined.

It will be tested in simulation, in isolation.

Text Draw
The text draw module draws a specified string of text to the screen, using an internal ROM to lookup
character bitmaps.

It will be tested in simulation, in isolation.

Pixel Fill
The pixel fill module fills specified pixels on the screen with a specified color, and may optionally use
alpha-blending to produce a transparency effect. The pixel fill module interacts directly with the rendering
ZBT RAM.

It will be tested in simulation, in isolation.

VRAM Manager
The VRAM manager is the gateway between the ZBT RAMs, the rendering pipeline, and the VGA output
module. At any given point, one of the RAMs is designated as ‘active’, providing data for VGA output, and
the other is designated as ‘inactive’, being written to by the graphics pipeline.

The pipeline and VGA module communicate with the ZBT RAMs through this module. When the swap
input goes high, the VRAM manager waits until vsync goes low (indicating that we have entered the
blanking interval between screen refreshes), and swaps the roles of the RAMS, making the active RAM
the inactive RAM, and vice-versa. Once this happens, it raises the swapped output high for one clock
cycle.

The VRAM manager will be tested in simulation, in isolation.

VGA Output
The VGA output module simply reads pixels from the active VRAM, and sends the appropriate signals
through the VGA connector to display them on a monitor.

GPS Receiver
(SiRF StarIII)

RS232 InputTx

Rx RS232
Output

Initializer

d
a

ta
 /

 9

SiRF
Message

Parser

data / 9

available

Data Log
Encoder fix / 160

write

data / 8

erase

Serial Flash ROM
Output

Serial Flash
(Micron M25P16)

Clock and Reset are global signals

S
D

I

S
E

L

Mobile Data Logger

Serial Flash
(Micron M25P16)

Serial Flash ROM
Input

S
E

L

S
D

I

S
D

O

available

data / 8
Data Log
Decoder

S
D

O

fix = {
latitude / 32

longitude / 32
altitude / 32

timestamp / 32
velocity / 32

}

Fix Queue

next

next

available

fix / 129

Rendering
Manager

restart

fix is as above, but w/o timestamp,
an with extra bit indicating EOF

fi
x
 /

 1
2

9

e
m

p
ty

re
a

d

IMPS/2 Decoder

a
v
a

ila
b

le

lm
r/

3

x
/8

y
/8 z
/8

p
s
/2

 d
a

ta

p
s
/2

 c
lk

active / 4

command/128

fix / 129

available

command is a tristate bus

Altitude vs. time

Velocity vs. time

2D Position

2D Position +
Altitude (3D)

2D Position +
Velocity (3D)

2D Transform

Null Transform

3D Transform

command/136

Rectangle Fill

Line Draw

Text Draw

VRAM Manager

all inputs to advance are ANDed together
for entire signal, which is bidirectional

advance

advance

command/136

ZBT-control lines

VRAM 1 (ZBT)

VRAM 2 (ZBT)

ZBT-C

ZBT-C

VGA Output

Z
B

T
-C

h
s
y
n

c

v
s
y
n

c

rg
b

/2
4

Clock and Reset are global signals

swap

swapped

Data Display

s
h
u

td
o

w
nre

a
d

y

ready

P
ix

e
l

F
ill

