Slap the Ninjas!

Giovanni Reveles
Chuan Zhang

Gameplay

* Ninjas appear on screen and attempt to move towards center

« Camera detects players’ hand which tries to slap the ninjas away from
center.

Design

Wideo Processing

hand posttion [19:0]

L

wdeodatacut [23:0]

(™
-

Game Module

[
-
B

heount, woount, heync, vsyne

Y

analog wideo

wdes [23:0]

Video Processing

werch [250] | rgh [230] s mdde [12:0)
) o ATt | g gecote [P pom o [Bhdro | e daaas]
ann sl .{ datu_vidid delaped it we
L Ebi wedten b
= 3NN
write_address [18:0] read address [18:0]
= L——
= H
i 0 1 01
P
]
=
qu
zbt0_address [18:0] (IJ—LE
data [35:0] £ data [35:0]
- = L3 s E — ~
E add [18:0] o E add [18:0]
|\—: 5 we R 37 & we ZBT 1
& 1 &
J "] —
g|
2 =)
& 2
2 z
= 5
(DI E
Z %l
btl g
ﬁ\‘ dbir § heount, woount
o read_data_zbt0 [23:0] [X | RSURL SR
o data_out [23:0]
ZBT Controller =
hand positon
read_data [23:0]
zht_wmtten_to

k

Issue #1: Synchronization

* Video camera and decoder run on 27 Mhz clock
« /BT and FPGA run on 65 Mhz clock
» Use series of flip flops to synchronize video data

Transition is missed on Transition is caught on Output is metastable
first clock cycle, but first clock cycle. for an mdet_ermlnate
caught on next clock amount of time.

cycle.

Issue #2: Hand Detection

Wear green gloves, use blue background
Filter out pixels not in valid color range

Average coordinates of pixels in intensity range to find center of
mass of hand

Issue #3: Timing

hcount, vcount run at 65 Mhz

Propagation delay from hand detection
Latency for reading from ZBT

Total Time access frame’s pixel data < 7.5 ms

T
® ZET =S
trp="132
tPD =5ﬂ5
ten = Ons
I tPD = 2115

CLE tepmp = lnis

tHEILD = D.?ﬂﬂs

Game Module

Colhzion Logic

.-'Jr -
XVED
hand_postion Timja Display
{1 &)
collisan BEW X,
W —
1 i) n_pAxe
. o o =l = = T = o
Cinme FEM |1 Bl =] 3| 5| 2| =
Hinja staie
phiver_hesith
[
!I L Health Tsplay
. {ta all)
" Timer
=
Tamse up?
|-
= It =
£ N
= -~
[ime_display AT =
&
: =
i 7
from_camen =
1
L 4 ¥

Drsplay Logie

I vam

Game issues

* Ninja Display
— Several ROMs to represent animation.
— A “depth” parameter will be use to determine display priority

— Initially simple stick figures, will try to implement more complex
sprites using portable grey maps and pgm2coe.py provided
online

« To test as stand alone game

— Generate two button controlled paddles on screen that behave
the same way as if hands were detected

— To implement game, hand center of mass will be represented as
a paddle

Display logic
« Gives priority to game graphics.

« Essentially a MUX where if there are any game graphics,
display them otherwise display the camera pixel.

time + health

ninja pixel game pixel 1

camera pixel

if (timethealth != 0)
if (game pixel != 0)

Timeline

* Video

— Dual-ZBT write/read functionality 11/17/2006

— Live video feed 11/22/2006

— Hand position detection 12/1/2006
« Game

— Animated ninja graphics 11/17

— Game FSM w/ health and time display 11/22

— Collision logic and stand-alone game implementation 12/1
« System Integration

— Last Week

