
Designing an Intuitive Video-Game Controller

Eddie Fagin and Irene Fan

13 December 2006

Abstract

Alternative video-game controllers can directly influence the entertainment value
of a game, either positively or negatively. Additionally, some controllers strengthen
the player’s physical and emotional attachment to the game. This project attempts
to explore these relationships further through a simulated video-game console. This
system merges a controller interface and informational displays with a fully-playable
game. The game is based on Atari’s Super Breakout (1978), which is played by
sliding a paddle horizontally along the bottom edge of the screen. This paddle
deflects a ball, which in turn is used to break different colored bricks at the top of the
screen. Certain colored bricks will drop items that affect game play, such as bombs
that shrink the size of the paddle. The game contains four distinct levels, which must
be played in sequence. The player manipulates the game paddle by moving a bright
LED within the viewable frame of a color camera, which in turn is connected to a
Xilinx Field-Programmable Gate Array (FPGA) system. This LED signal is
processed using filter modules designed with extensive testing to determine
constraints, and calculation modules to determine the motion of center-point of the
LED light clocked at a frequency of 60 Hz. The system processes the speed and
direction of user motion and passes this information to the game. The game then
uses this data to proportionately control paddle movement. In the design,
synchronization and timing details were carefully considered and tested as to avoid
metastability and display issues. Most testing was done directly through the FPGA,
although ModelSim was used to confirm the operation of smaller auxiliary modules.
Other students in the course (as well as staff) were asked to test our project using
both the controller and the directional pad on the FPGA, and observations collected
from these experiences tends to confirm the hypothesis that the controller does in
fact heighten the player’s attachment to the game.

i

Contents

1 Overview 1

2 Project Modules 7
2.1 Controller . 7

2.1.1 rgbfilter.v . 7
2.1.2 centerofmass.v . 8
2.1.3 COMvelocity.v . 9
2.1.4 xvga.v . 10
2.1.5 Modified Video Modules . 10

2.2 Game Modules . 12
2.2.1 superbreakout.v . 12
2.2.2 block detector.v . 18
2.2.3 circle.v . 19
2.2.4 det brick din.v . 20
2.2.5 detect bombs.v . 20
2.2.6 display.v . 21
2.2.7 drop game object.v . 22
2.2.8 expander blob.v . 23
2.2.9 game over.v . 23
2.2.10 intertitle.v . 24
2.2.11 modblob.v . 25
2.2.12 recorder.v . 25
2.2.13 score.v . 26
2.2.14 speed.v . 26

2.3 System . 27
2.3.1 Hex2Dec and Tencounter . 27
2.3.2 LED Display . 27
2.3.3 NegEdgeDetector . 29

2.4 Paint Mode . 29
2.4.1 Block Test . 29
2.4.2 HighForFrame . 30
2.4.3 TrackerBlob . 30

3 Testing and Debugging 30
3.1 Eddie . 30
3.2 Irene . 32

ii

4 Conclusion 34

A Verilog Code 36
A.1 block detector.v . 36
A.2 block test.v . 37
A.3 centerofmass.v . 39
A.4 circle.v . 41
A.5 debounce.v . 43
A.6 delayN.v . 44
A.7 det brick din.v . 45
A.8 detect bombs.v . 46
A.9 display.v . 47
A.10 drop game object.v . 50
A.11 expander blob.v . 54
A.12 finalproject.v . 56
A.13 game over.v . 67
A.14 gen model.v . 69
A.15 hex2dec.v . 71
A.16 highforframe.v . 74
A.17 intertitle.v . 75
A.18 modblob.v . 78
A.19 negedgedetector.v . 79
A.20 ntsc2zbt.v . 80
A.21 recorder.v . 82
A.22 rgbfilter.v . 84
A.23 score.v . 86
A.24 speed.v . 87
A.25 superbreakout.v . 88
A.26 trackerblob.v . 104
A.27 video decoder.v . 106
A.28 vram display.v . 109
A.29 xvga.v . 110
A.30 zbt 6111.v . 111

iii

List of Figures

1 Block Diagram for the Controller . 2
2 Types of Bricks . 4
3 Game-Affecting Objects . 5
4 RGB Filter, Center of Mass, and COM Velocity 7
5 How the COM Velocity module determines COM direction 10
6 XVGA Module . 11
7 Block Diagram for Camera to RGB Signal Generation 11
8 Collision Detection When Moving to a Diagonally-Adjacent Block . . . 15
9 Timing and Structure of Hex2Dec . 28
10 HighForFrame timing diagram . 30

iv

1 Overview

Throughout the somewhat brief history of video games, game designers have been

held back by technological restrictions, player preferences, bureaucratic oppression,

and deadlines. In the days of arcade ubiquity, consoles were built specifically to house

a single game and could be custom-tailored to that game; the number of buttons and

joysticks on any arcade console reflected the exact input demands of the game inside.

With the move to home consoles, designers have become vulnerable to the constraints

imposed by standard game controllers as well. Most console games are now built

around these controllers because one of the most decisive factors of a game’s success

is the ease with which the player can physically interact with the game world. This

project explores the concept of an alternative user interface by constructing an new,

simple controller for an old game. This design attempts to demonstrate the theory

that “intuitive” methods of control will enhance a game’s entertainment value.

The controller is a button-activated standard diffuse LED– specifically, a $5 LED

flashlight from RadioShack. The project can be driven successfully by any bright

LED. A player interacts with the game by pointing the LED controller at a color

camera and moving the controller around the frame defined by the camera. This

information is the primary input to the game. One of the secondary features of the

controller interface is that any simple joystick-powered game from the Atari era could

be “plugged in” to the virtual console. However, one game is sufficient to

demonstrate the controller’s functionality. In this game, the player moves the

controller along the horizontal axis to manipulate a paddle. The speed at which the

user moves the controller is related to the speed at which the paddle moves.

The controller interface generates velocity information in each frame by filtering

and averaging the LED light, as shown by the block diagram in Figure 1. Several

modules, originally used to display real-time black-and-white video footage from a

1

camera, are adjusted in numerous places to generate a real-time color (RGB) camera

image. The NTSC decoder converts camera input data to 24 bits of intensity and

chrominance (YCrCb) per pixel. One quarter of this information is stored in ZBT

memory until needed. Since the camera should be out of focus for better controller

operation, a high-quality image is unnecessary.

Figure 1: Block diagram for the controller.

The YCrCb2RGB converter from the Xilinx toolkit generates a 24-bit RGB signal

for each 24-bit YCrCb read from the ZBT memory. This RGB data is passed through

a filter that removes all red, green, and blue values below a certain cutoff point. Of

2

the data that passes this cutoff, only the strong red, green, or blue values pass

through the filter. This process removes most of the image data, allowing only the

brightest basic colors to reach the center-of-mass calculations. Only the green pixel

data is considered, but the other two colors are readily available if needed

The green pixel data is passed to a module (centerofmass) that calculates the

effective center of pixel mass and attempts to remove any anomalies caused by noise

or other external factors like the overhead lighting. Once the center of mass in each

frame has been calculated, another module (COMvelocity) determines the velocity

(speed and direction) of this point, based on what it knows about the previous

point’s position. The speed can take on one of four values (zero, slow, medium, and

fast), and direction can be up, down, left, or right. Therefore, this module has 16

possible outputs (four bits) to the rest of the system.

In this project, an updated version of the popular Atari game Super Breakout

(1978) was created to demonstrate the controller’s functionality. In Super Breakout,

there are rows of bricks lining the top of the screen and a ball that bounces off the

side and top walls, breaking bricks whenever it ricochets against them. A paddle is

located at the bottom of the screen, and it is moved left and right to deflect the ball;

if the paddle misses the ball and the ball touches the bottom of the screen, the game

is over. The user’s main motive is to break all the bricks on the screen. In our version,

we designed four different levels with various brick formations, implemented multiple

lives, and made game-affecting items drop from various bricks as they are hit.

When the controller is being used, the ball’s horizontal velocity changes

depending on the paddle’s speed upon ball-paddle impact. The game simulates the

paddle having a large frictional coefficient, which speeds up the ball if both paddle

and ball are moving in the same x-direction and slows down the ball if the paddle and

ball are travelling opposite ways. The amount by which the ball speeds up or slows

3

down is proportional to the paddle’s speed upon impact.

The game divides the entire screen into an 8 by 24 grid of blocks, each one 128 by

32 pixels. Each block either contains a brick or does not. Bricks’ colors reflect the

number of remaining hits they need before they break: red bricks need 1 hit, yellow

bricks need 2, green bricks need 3, teal bricks need 4, and blue bricks break after 5

hits, as shown in Figure 2. So, a red brick would disappear from the screen once it

was hit, a yellow brick would turn red, a green brick would turn yellow, etc. Magenta

bricks never break, and whereas the other-colored bricks are solid blocks, the

unbreakable bricks are pictured as a thick magenta shell around a hollow core.

Figure 2: The colors of the bricks reflect the number of remaining hits they need to get before they break.

Different levels in the game are designed to gradually introduce the different types

of bricks. The first level contains three rows of red, yellow, and green bricks at the

top of the screen; the second level brings in the unbreakable magenta bricks; the third

level introduces teal and blue bricks in a challenging starburst pattern; and the last

level ties everything together in a fun arrangement of bricks spelling out “6.111.”

The game has three types of game-affecting items: bombs, expanders, and life

capsules, as shown in Figure 3. Bombs look like red balls and are dropped from red

4

bricks that are broken; they shorten the paddle upon impact. Expanders are pairs of

green outward-pointing arrows that fall from green bricks; the paddle is lengthened if

it catches one of these as they fall. Bombs can shorten a paddle until it disappears

from the screen; expanders lengthen a paddle up to its initial size. Life capsules are

the third kind of game-affecting item, and they fall from blue bricks that have been

hit. These blue-colored balls, if caught, grant the player an extra life in the game (up

to a maximum of 5 extra lives).

Figure 3: There are three types of game-affecting objects: bombs, which shrink the paddle; expanders,
which lengthen the paddle; and life capsules, which grant the player an extra ball.

Besides dropping from red bricks, bombs also start falling from the top of the

screen near the end of each level. When there are less than 4 bricks left on the screen,

bombs start falling every 128 frames from scattered locations across the top of the

screen. This random bombing behavior intensifies when there is only 1 brick left on

the screen, increasing the frequency to every 32 frames.

The game’s score is incremented by the game’s difficulty (speed of 0, 4, 8 or 12) at

each collision with a non-magenta block, no matter whether the brick actually breaks.

This score is displayed on the lower 32 bits of the hex display on the FPGA labkit

during gameplay, and an overall high score for all games played since the labkit was

reprogrammed is shown on the top 32 bits.

The game is synchronized to a 65-MHz clock. The main module,

superbreakout.v, is a big linear finite state machine (FSM) that updates the state

of the game at the end of every frame. This is accomplished in several steps. First,

given the current ball position and x-y velocities, the module calculates where the ball

5

would want to move next if no bricks were in its way. The block that contains this

anticipated move is checked to see if it contains a brick–in the event of a collision, the

appropriate brick is “hit” and the ball “bounces” off of it by changing velocity,

simulating a perfect reflection off the brick. The position of the paddle is also updated

before the beginning of the next frame, as is the state of any other objects on screen.

Several other submodules work together to create the other major parts of the

game. circle, modblob, and expander blob create the sprites for the ball, bombs,

lifecapsules, paddle, and expanders. The display of game-affecting objects and their

position is managed under drop game object. The display module draws the bricks

from logic and also manages the pixels for all the objects shown on screen. The speed

module changes the speed of the ball depending on how it hits the paddle, and the

score module keeps track of the current game score. An intertitle module generates

the pixels for intetitles shown at the beginning and end of the game as well as

between levels.

The information for the bricks are stored in two BRAMs. One is a dual-port

read/write memory, which is used to display the bricks and is modified during the

game as bricks are hit. The other is a read-only memory that holds a copy of the

original information used to generate the different brick formations in each level.

Upon the start of a new level or a reset to the game, the information from the

read-only memory is copied over to the dual-port memory, and this generates on

screen a fresh copy of the correct brick arrangement.

This document describes how the controller and game were designed, discussing in

detail the function and implementation of each submodule. Testing and debugging

methodologies are discussed along with thoughts about the overall process of making

such a project.

6

2 Project Modules

2.1 Controller

2.1.1 rgbfilter.v

(Eddie)

Figure 4: RGB Filter, Center of Mass, and COM Velocity

As shown in Figure 4, the RGB Filter is actually a series of small sub-filters that

process the per-frame RGB camera data and remove all low-brightness color values.

The middle eight bits (green color values) of the output are then used to calculate the

center of green light “mass” for game use. This post-processed green pixel data can

be viewed in the project’s “Filter” mode of operation.

The purpose of this filter is to isolate any potential inputs (bright lights) and

remove any noise or background information. By reducing the possible pixel values

from 224 (17 million; 8 bits each of red, green, and blue) to 22 (red, green, blue, or

black), the center-of-mass calculation requires far less processing power. In addition,

the mass calculations only look at the green values, reducing the number of possible

inputs to two–green or black.

As mentioned before, our filter has four sub-filters. Each part is designed to

remove or amplify a specific feature of the camera image data, outlined here:

1. Remove anything not related to camera input. The NTSC decoder and display

7

modules generate an image (approximately 700 x 500 pixels) within the larger

1024 x 768 screen. As a result of this process, the pixels outside this window are

simply noise that should be discarded when analyzing the image data.

2. Remove all RGB values below a specified cutoff parameter. Each 8-bit value for

red, green, and blue indicates the respective brightness of that color. One of the

module inputs is an 8-bit constant (0-255) that defines the minimum acceptable

brightness, and each third of the RGB input is compared with this value. If the

value meets the constraint, it passes unchanged, and otherwise is set to black

(zero). For our project, filter is fixed at 252, which was determined after

extensive testing.

3. Select the brightest color, if it exists, and amplify it. If no color (red, green, or

blue) is clearly brighter than the other two, discard that value. For example, if

green is brighter than red and blue for this pixel, set the red and blue

components to zero and set the green component to 255, the maximum.

4. Determine the output, depending on the user’s preferences. One of the module’s

inputs, greenfilter, when high, forces the red and blue components of every

pixel to zero. Our project’s calculations only require green pixels, so

greenfilter is always forced to high.

2.1.2 centerofmass.v

(Eddie)

The center-of-mass (COM) module dynamically computes the effective center of

all bright green pixels in each frame. The module takes as input the stream of filtered

pixels from the camera (one pixel / clock), as well as the 65-MHz clock and the frame

clock. Since the incoming filtered pixels from RGBFilter are either completely green

or completely black, we can treat each pixel as “on” or “off.”

8

For a collection of i objects, each weighing mi and at position ri, the center of

mass of these objects (R) is defined as:

where M is the total mass of the system. In our system, we find the center of mass

of green pixels. Each pixel “weighs” the same amount, so we can calculate the center

of pixel mass each frame by independently summing the x and y coordinates of each

green pixel and dividing those sums by the total number of green pixels in the frame.

Two dividers, created via the CoreGen tools, handle the averaging process. The

horizontal and vertical dividers take 22- and 20-bit position sums, respectively, and

divide that value by the total pixel weight, a 20-bit value. This pixel weight must

pass a certain cutoff (greater than 15) before the COM can be updated; this safety

check ensures that the controller does not act unexpectedly due to noise when idle.

2.1.3 COMvelocity.v

(Eddie)

The COM module models many pixels each frame as a single point, and passes

this coordinate to the COMVelocity module. This module compares the current

frames COM to the last frames value, and from this information, determines the

speed and direction of the COM.

First, the module figures out if the COM motion is within reasonable limits. If the

change in position is much greater than expected, the module understands this

anomaly as a glitch or noise, so the controller re-calibrates itself to this new value

while setting the COM speed to zero. If the change in COM is very small (two pixels

or less in any direction), the module will also ignore this change in order to help

stabilize the output.

If the change in COM passes the safety checks, the module then determines the

9

cardinal direction of point motion, as shown in Figure 5. Essentially, the process

models the old COM as the origin of a Cartesian coordinate system and determines

the rough direction of the new point (i.e. for QI: “Did the point go more up than

left?”). Note, left and right are flipped to account for the camera pointing at the

user, creating a mirror image of user motion.

Figure 5: How the COM Velocity module determines COM direction

Finally, the module calculates the approximate speed at which the point travels,

categorizing speed as “zero,” “slow,” “medium,” or “fast.” Parameters specifying

these cutoff values were determined through extensive testing. Finally, the module

generates a four-bit velocity output describing one of sixteen possible outputs (four

directions, four speeds).

2.1.4 xvga.v

The XVGA module, as shown in Figure 6 was provided by the course staff. It

generates five signals that are used extensively in the project: hcount and vcount

reference the current active pixel; hsync, vsync, and blank are timing signals that

allow the FPGA to create an interlaced 60-Hz video output on the screen. The hsync,

vsync, and blank signals must be delayed by certain amounts depending on the

latency of pixel generators such as the game.

10

Figure 6: XVGA Module

2.1.5 Modified Video Modules

(Eddie)

A collection of helpful modules is available for student use on the 6.111 web site

(http://web.mit.edu/6.111/www/f2005/handouts.html), including a package that

uses a ZBT RAM (zero-bus turnaround random access memory) buffer to generate a

1024 by 768 black-and-white image from NTSC input. These modules, in their

original form, produce an 8-bit intensity value for each pixel. The modules have been

modified, as shown in Figure 7, to generate a 24-bit RGB value for each group of four

pixels; although image quality is drastically reduced, the amount of information

stored in the ZBT does not change and a color image is more useful for the project.

The controller processing unit takes as input the RGB data produced by the group of

video modules.

2.2 Game Modules

The Super Breakout game is made up of a main module and numerous submodules.

The game was built in several stages. First, the pong game from Lab 5 was modified

so that the paddle was now moving across the bottom of the screen instead of up and

down the left side, and the originally square puck was changed to a circular ball.

11

http://web.mit.edu/6.111/www/f2005/handouts.html

Figure 7: Block Diagram for Camera to RGB Signal Generation

Then, bricks were generated on the 1023 by 768 pixel screen from a 1 by 192 array

containing information for the 8 by 24 grid of blocks. Collision detection was

implemented to complete the basic game.

From there, the other features were added in one by one–different types of bricks,

game-affecting objects, score, levels, multiple lives, changing ball speeds, and

intertitles for different points in the game.

This section details each of the game modules; all Verilog code is included in the

appendix.

2.2.1 superbreakout.v

(Irene)

The superbreakout module is the main module in which the game comes

together. Most gameplay updates happen in a series of less than 15 clock cycles after

the vsync signal goes low at the end of a frame.

12

The game logic begins by observing where the ball would move in the next frame

if there were no bricks in its path and it was only bouncing off the walls and paddle;

it takes the ball’s current coordinates ball x and ball y and looks at the x and y

velocity components ball xvel and ball yvel to generate the coordinates of the

anticipated move, check x and check y. The ball velocity’s x and y components are

considered independently. For each component, the game checks for several

conditions. If the ball is currently touching the top or side walls, it ”bounces” in the

other direction by moving the appropriate xspeed or yspeed. Otherwise, if the ball’s

next move would send it into or past the wall, the ball only moves as far as the

surface of the wall (in which case, if there are no bricks, the first condition is met in

the next move and the ball will bounce). If neither of the previous two conditions are

met, the ball is sufficiently far enough from the wall and ball x or ball y just shifts

by xspeed or yspeed, keeping the same velocity.

The case where the ball is traveling downward (ball yvel is 1) requires that

slightly different conditions be checked since the ball may hit the bottom of the

screen or bounce off the paddle. If the ball touches the bottom of the screen, the

player loses a life. If the next downward movement of the ball will take it past the

top of the paddle, the x-coordinates of the ball are checked to see if they are within

the bounds of the paddle, in which case the ball will bounce off the paddle.

Otherwise, check y is the current ball y increased by yspeed.

Once established, check x and check y can be used to find the grid coordinates,

check gridx and check gridy, of the anticipated move, using the block detector

module. In turn, the grid coordinates are used to calculate the address for the

memory location containing information for that block. Since the 192 memory

elements for the blocks in each level are arranged by rows, the address for a certain

check gridx and check gridy would be check gridy << 3 + check gridx. At the

13

same time, the paddle speed for this frame is set according to how fast the controller

is being moved.

The information for the block of the anticipated move is stored when it is

available from the brick memory, in check brick dout[3:0]. In case this next block

is situated diagonally from the current block, the information for the vertically and

horizontally adjacent blocks are also retrieved and stored, in vert brick dout[3:0]

and horiz brick dout[3:0], respectively. The information for these blocks is used

for collision detection.

Collision detection is a key part of the superbreakout module, as it determines

whether the anticipated move is feasible. The simplest case is when the block of the

anticipated move is the same as the current block containing the ball, in which case

there is guaranteed to be no collision. In other cases with no collision occuring in the

next frame, the ball can also complete the anticipated move, with ball x and ball y

simply taking on the values of check x and check y, respectively. For the cases where

the anticipated move is located in a vertically or horizontally adjacent block which

contains a brick, the y-velocity is reversed if the current block’s y-coordinate is not

the same as the y-coordinate of the block containing the anticipated move, and the

x-velocity is reversed if the ball travels to a side block. For example, if ball gridy is

not the same as check gridy, the ball wants to move vertically and this will make it

collide with the vertically adjacent brick; the game logic therefore stops the ball

where it is for a frame and reverses its y velocity so it “bounces” off that brick.

The “diagonal case,” where the anticipated move is to the block located diagonally

from the current one, is more complex–different combinations of bricks located in the

diagonally, vertically, and horizontally adjacent blocks warrent different collision

behavior, as seen in Figure 8. A collision will occur if either the diagonal block has a

brick or if both the horizontally and vertically adjacent blocks contain bricks.

14

Figure 8: Collision detection is more complex in the case where the ball’s anticipated move is to a block
located diagonally adjacent from the current one. The 5 different cases and arrangements of adjacent bricks
are shown above; gray boxes mark blocks containing bricks, the X denotes the brick that gets broken in the
next frame.

1. If both horizontally and vertically adjacent blocks contain bricks, then the

expected behavior is for both of these bricks to break; the diagonal brick will

not break even if it exists. To achieve the expected behavior, the vertical brick

is broken first and the ball’s y-velocity is reversed. This way, in the next frame,

the horizontally adjacent brick will break and the ball will reflect from the

corner into which it bounced.

2. If only the diagonally and vertically adjacent blocks contain bricks, the ball will

make the anticipated move to the diagonal block and break the brick that is

there. The ball’s y-velocity is reversed.

3. If only the diagonal and horizontally adjacent blocks contain bricks, the ball

breaks the diagonal one, and the ball’s x-velocity is reversed.

4. If out of the 3 adjacent blocks (in the direction of the ball’s current x, y

15

velocities) only the diagonally adjacent block contains a brick, then the ball

breaks that brick and reflects off the corner. In other words, both the ball’s x

and y velocities will change in the next frame.

Only the path traveled by the center of the ball affects the way the ball collides

with bricks. If a part of the ball’s outer rim overlaps with a the corner of a brick as it

is moving, the system will not detect a collision. The black borders around each brick

(2 pixels per side) as well as the relatively small size of the ball (4 pixel radius) make

this behavior less apparent during gameplay.

Another trick used in this game’s collision detection is holding the ball’s x and y

coordinates at the same value for a frame when the anticipated move generates a

collision, instead of shifting the ball all the way to the edge of the brick with which it

is colliding. Especially with ball speeds that change when the ball contacts the

paddle, shifting the ball to be perfectly tangent to the brick is challenging. At the

refresh rate of the game, this shift is unnoticable, so the game is designed such that

only the appropriate x and/or y velocities are changed during frames in which

collisions occur.

In the event of a collision, the color of the brick that breaks is used to determine

what the next color should be using the module det brick din; this information is

written back to the brick BRAM. Also, game-affecting objects are dropped if bricks

of the corresponding color are dropped: red bricks drop red bombs, green bricks drop

green expanders, and blue bricks drop blue life capsules.

Game-affecting items are also be dropped if fewer than four breakable bricks are

left on screen, in which case bombs fall every 128 frames from ”random” locations at

the top of the screen. When there is only one breakable brick left, bombs drop at a

rate of once per 32 frames, or about one every half second. The x-coordinate of the

grid from which these bombs are scattered is determined by incrementing a three-bit

16

variable by 5 after each bomb is dropped. Since the grid is 8 blocks wide, adding 5 to

drop gridx prevents the bombs from all falling in a one area. The positions of all

currently displayed game-affecting objects are updated when update clock is pulsed

high. All game-affecting objects are managed by the drop brick object module.

If the paddle was hit by a bomb or expander in the previous frame, it is shortened

or lengthened accordingly. The paddle width can be shortened until the paddle

disappears entirely, but cannot grow to be past the initial paddle width. The amounts

the paddle shrinks and grows are specified by the parameters paddle shrink amount

and paddle grow amount. The paddle also moves left or right according to the input

from the left/right buttons on the FPGA or from the controller input.

The last step to updating the state of the game is to grant the player an extra life

if a life capsule hit the paddle in the previous frame. The maximum number of extra

lives is 5.

Besides updating the regular state of the game at the end of every frame, the

superbreakout module also handles game behavior related to system resets and level

changes. Upon a reset, the game returns to the first level and the player can start

again with 5 lives. When a user forces a level change by pressing the down button on

the FPGA, the game cycles to the next level. Since the game has 4 levels, the brick

memories are 192*4=768 elements long, each element containing 4 bits (1 bit of

display, 3 bits of color). During gameplay, the BRAM is accessed in blocks of 192

elements, with each block representing a level. Moving to the next level involves

shifting the address to the BRAM by a multiple of 192 corresponding to the current

level so that the game is interacting with the correct part of the memory.

Resets and level changes require the bricks on screen to be regenerated; here is

where the read-only brick memory comes into play. The brick reset signal goes

high, and information from the read-only BRAM is copied over to the read/write

17

BRAM one element at a time. Since it takes time for the information from the

BRAM to appear after a new address has been set, the brick-reset phase alternates

between a write cycle and read cycle. During the write cycle, the next address for the

read-only memory is generated, and the data available from the last element accessed

in the memory is saved. If the copied element contained the brick information for a

non-magenta brick, a variable that keeps track of the initial number of bricks on the

screen is incremented. Then, during the read cycle, the address of the element in the

read/write memory to be written is set and the write enable signal is pulsed high so

the information can be copied over.

The variable that counts the inital number of breakable bricks (i.e., non-magenta

bricks) is used to determine the number of bricks that need to be broken to complete

the level. Each time a red brick is broken, this number is decremented by 1 and

outputted as num bricks left; when 0 bricks are left, it is time to move onto the next

level.

When the player beats the last level, superbreakout shows the ”You Win”

intertitle and waits for a reset signal to start the next game; likewise, when a

playerloses his last life, the game stops as expected. In other instances where a player

fails to deflect the ball with the paddle, losing a life resets the level in terms of

moving the paddle back to the middle of the screen, starting the ball at the center of

the paddle, and clearing all game-affecting objects from the screen. Already-broken

bricks are not regenerated again at this point.

2.2.2 block detector.v

(Irene)

The screen is divided up into a grid of 8 by 24 blocks: given a pixel as denoted by

hcount and vcount, the block detector module returns the coordinates of the block

18

in which the pixel is located in the form of grid x and grid y. Each block is 128 by

32 pixels and either displays a brick or does not. Performing this change of

coordinates allows the game to ignore the individual pixels and work with bricks

instead, which is much more intuitive to implement.

The block detector module works by selecting bits out of hcount and vcount.

Since hcount needs to be divided by 128, the x-coordinate of the grid is just

hcount[9:7]. The top bit of hcount is ignored, as only 1024 pixels are displayed on

screen. vcount needs to be divided by 32, so it is right-shifted by 5 bits and the

y-coordinate of the grid is merely vcount[9:5].

Several block detectors are used within the superbreakout module: to get the

coordintes of the ball’s original pixel location, to get the coordinates of the block the

ball would be in after its anticipated move, and to get the coordinates of the block

the current pixel is in for the display module.

2.2.3 circle.v

(Irene and Eddie)

The circle.v module displays an 8x8 circle from a ROM, and is used for the

ball, bombs, and life capsules in the game. The default circle color is white, but

bombs are red and life expanders are blue.

The display input controls whether or not the circle is displayed on screen.

While the ball is always displayed, bombs and lifecapsules are only shown when they

are dropped from broken bricks.

To avoid glitches, the circle module loads the data from the ROM into a 64-bit

register when vsync goes low at the end of each frame, then reads this data in the

next frame. At the end of every frame, the 6-bit counter and the ball data in the

register are cleared, and the 1st address from which to read the ROM is established.

19

The module then begins alternating in and out of a read cycle. During the read cycle,

the address is set to access the next element of the ROM, and the data out from the

ROM for the last element is saved into the register. The clock cycle between each

read cycle gives the memory time to fetch the data from the new address. Contents

of the register are shifted up one ”slot” at this time so that by the time the whole

ROM has been read, its data is loaded into the 64-bit register.

When the next frame is displayed, the circle is displayed using the ROM data

copied to the register. When hcount and vcount are within the 8x8 square to the

right and below the x-y coordinates of the circle, the last bit of the register is

checked. If the last bit is a 1, the pixel output is assigned to the circle’s color;

otherwise, the pixel displays black. After this last bit has been looked at, the

register’s data is right-shifted so the next bit of information is ready to go.

2.2.4 det brick din.v

(Irene)

The det brick din module specifies what the next color of a block should be if a

brick of the specified color is hit. Red bricks turn break and turn black, yellow bricks

turn red, green bricks turn yellow, teal bricks turn green, blue bricks turn teal, and

magenta bricks stay magenta (they never break). This look-up table is accomplished

with a case statement that takes color, the current brick color, and outputs

next brick color, the 4 bits to be written to the brick memory. The output is 4 bits

because the top display bit has been appended to the bottom 3 color bits for

convenience.

This module is used in superbreakout when it has been determined that there is

a collision, and the block’s information needs to be updated.

20

2.2.5 detect bombs.v

(Irene)

detect bombs is a ”general-purpose” module that detects when the pixels of one

specified object overlap with pixels of a second specified object. This module is used

in several places to generate signals that indicate when bombs, expanders, and life

capsules hit the paddle. It takes as inputs output1 pixel[2:0] and

output2 pixel[2:0], two objects’ pixel objects, and first ORs the bits of each one

together (to determine if either one is black) before AND-ing the results and

assigning it to the variable hit. hit is therefore 1 when, at a certain pixel, both

objects are overlapping.

In superbreakout.v, the variables shorten paddle b1, shorten paddle b2,

shorten paddle b3, shorten paddle b4, shorten paddle b5, lengthen paddle,

and life up are used determine whether or not game-affecting objects have collided

with the paddle in the last frame; these variables were created because although the

output of detect bombs goes high when there is an overlapping pixel between the two

objects, it returns low as soon as hcount and vcount are at at non-overlapping pixels

of the colliding sprites. During each frame, these variables are OR-ed with the output

of detect bombs, so once they are high they stay high for the rest of the frame.

2.2.6 display.v

(Irene)

This module creates the bricks from the contents of a dual-port RAM which

contains information for every block, and outputs the combined pixel outputs of all

objects on screen. The module also handles switching to and from intertitles, as well

as the ball-fading feature.

Inputs to display.v include hcount and vcount; grid x and grid y, which are

21

the coordinates of the block hcount and vcount are currently in as determined by an

instance of block detector; brick data out, which is the output from the brick

memory containing information about the current block; the pixel outputs for the

bombs, expander, life capsule, ball, and paddle; fade on, which controls whether the

ball darkens as it moves toward the bottom of the screen; and title on, which

determines if an intertitle is supposed to be displaying on screen. The module

outputs an address to the brick memory as generated from grid x and grid y, also

generates a full 24-bit color game output to the VGA.

The bricks are drawn from logic. Each block has a 2-pixel border around it; these

outermost 2 pixels around the block are determined by looking at hcount[6:1] and

vcount[4:1], because each brick is 128 by 32 pixels wide. If these bits are all 1’s or

all 0’s, then the current pixel is one of the 2 pixels at the right-end/bottom of the

brick or at the left-end/top of the brick. The 8-pixel ”rim” for the hollow magenta

blocks with a similar concept, looking to see if hcount[6:3] or vcount[4:3] are all

1’s or 0’s. As hcount and vcount move across the screen, the address to the brick

memory is recalculated every time the coordinates enter a new brick. If the brick

data shows that a brick is present, the pixel output is kept at the specified color.

There are 2 exceptions: all brick borders and the non-rim part of magenta bricks are

always black.

If title on is high, it is time for an intertitle to appear. These fade in over the

course of around 4 seconds. If fade on is high, then the ball changes colors as it

moves up and down the screen, staying a bright white at the top but fading to a dark

gray as it approaches the paddle.

2.2.7 drop game object.v

(Irene)

22

drop game object.v handles the dropping and managing of bombs, expanders,

and life capsules in the game. There can be up to 5 bombs, 1 expander, and 1

lifecapsule on the screen at a time. Bombs shorten the paddle when they hit it,

expanders lengthen the paddle, and lifecapsules grant the player an extra life.

The module makes dropping objects in the game very easy–in superbreakout.v,

the signals drop bomb, drop expander, or drop lifecapsule are pulsed high when

the respective objects are supposed to be dropped from a brick. grid x and grid y

are the only other inputs that need to be set, and these specify the grid from which

the game-affecting object is supposed to fall.

This game-affecting objects manager has numerous other inputs and outputs. The

update clock signal is pulsed high once a frame from the superbreakout module,

when it is time for the all the game-affecting objects currently displayed on screen to

update their position for the upcoming frame. The signals shorten paddle b1,

shorten paddle b2, shorten paddle b3, shorten paddle b4, shorten paddle b5,

lengthen paddle, and life up are high if the bomb, expander, or lifecapsule sprites

intersected the paddle sprite in the last frame. When objects collide with the paddle,

they take effect by changing the length of the paddle or by giving the user an extra

life. The bomb, expander, and extra life display signals indicate whether those

objects are currently falling down the screen. The drop game object also generates

the x and y position coordinate for the top left corner of each of these objects’

sprites, since it controls how these objects fall.

Falling objects disappear when they either hit the paddle or get near the bottom

of the screen. Also, on a reset, level change, or when the player loses a life, the screen

is cleared of all bombs, expanders, and life capsules.

23

2.2.8 expander blob.v

(Eddie)

This module displays the icon for the expander, which lengthens the paddle if

caught. expander blob.v is very similar to circle.v–at the end of every frame

(when vsync goes low), ROM data is loaded into a register and then read from the

register during the next frame as to avoid glitches. The difference between circle.v

and expander blob.v is that they read from different ROMS. The expander is 16x8

pixels, instead of being an 8x8 pixel block. Whereas the bombs and life capsule look

like different colored balls, the expander is represented by two outward-pointing

arrows. For details on how the contents of the ROM are read into the register before

the next frame is displayed, see circle.v above.

2.2.9 game over.v

(Irene)

The game over module raises the done signal the end of a level, when there are no

more breakable bricks left on the screen. It also outputs the number of breakable

bricks left on the screen, num bricks left, which is used in the ”random bombing”

in superbreakout.v. (When there are 3 or fewer bricks left in the level, bombs start

to fall from the top of the screen every 128 frames; and then when there is only 1

brick left, the ”acid rain” feature drops a bomb every 32 frames).

The module takes as inputs init num bricks, the initial number of breakable

bricks on the screen; collision, which goes high whenever the ball hits a brick; and

color, which is the color of the brick that was hit.

Whenever collision goes high and the brick color is red, the number of bricks

left is decremented – as soon as this number num bricks left reaches 0, the level is

over and done goes high. A reset signal sets the number of remaining bricks back

24

the initial number of breakable bricks in the level as determined after the brick reset

phase in superbreakout.

2.2.10 intertitle.v

(Eddie)

At certain points in the game, gameplay pauses and full-screen image appears on

the monitor. These intertitles are useful and entertaining indications of the player’s

progress beyond the visible LED signals on the FPGA. For example, when the player

completes Level 3, a picture materializes announcing that the player has successfully

completed the level and that he or she should press a button to continue.

The game can display any of the six possible pre-loaded images, depending on

certain game milestones. As these milestones occur, this module loads the appropriate

image from BRAM and generates the appropriate pixel output. This image remains

loaded until the next milestone; at this point, the previous image BRAM becomes

disabled and the new BRAM enable switches on. Each BRAM stores a 256 by 192

pixel 8-color (3-bit) bitmap image, generated in Microsoft Paint and converted to a

.coe file using Matlab (the .m file can be found at http://www.mathworks.com/

matlabcentral/fileexchange/loadFile.do?objectId=12437&objectType=file).

The six images correspond to the following self-explanatory states: Pre-Game, Level

1 Complete, Level 2 Complete, Level 3 Complete, Game Over, and Game Complete.

Each bitmap pixel is up-sampled to a 4 by 4 pixel block by the intertitle module,

generating a 1024 by 768 pixel image for the VGA output. This process is doubly

important as it also allows the BRAM time to fetch each image pixel. The games

display module contains code that creates a fade-in effect whenever an intertitle

becomes visible during normal game operation.

25

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=12437&objectType=file
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=12437&objectType=file

2.2.11 modblob.v

(Irene)

This module is modified off the blob.v sprite generator given to us for Lab 5;

modblob makes it easy to change the rectangle’s width[8:0], height[4:0] and

color[2:0] because it takes them as inputs instead of setting them as parameters.

The paddle grows and shrinks when hit by expanders and bombs, respectively, so it

needs to change dimensions in the middle of the game.

Other inputs to modblob are display, which determines if the sprite is shown on

screen (the paddle is always displayed); x and y, the x-y coordinates of the sprite’s

top left corner; and hcount and vcount, the current displayed pixel.

As in blob.v, when hcount and vcount are in the rectangle of size width and

height to the bottom right of the sprite’s top left corner, the outputted pixel has

the specified color. Otherwise, the displayed pixel for the sprite is black.

2.2.12 recorder.v

(Eddie)

The Recorder module interfaces with the AC97 audio chip on the FPGA and

maintains a BRAM that allows the user to record, play back, and clear a brief sound

clip. While the user holds down the record button (Button Up), he or she can speak

into a microphone and record a very short audio waveform. Whenever the playback

signal is asserted high, the entire sound clip plays. This playback cannot be

interrupted by another playback request. This module is used to generate and store

user-defined collision sound effects in Game Mode.

2.2.13 score.v

(Irene)

26

score.v calculates the score – every time the ball hits a non-magenta brick, the

score increments by the current speed. Inputs are reset, which resets the score back

to 0; collision, which is 1 whenever the ball hits a brick; pspeed, the initial speed

of the ball as set by switch[3:2]; and color, the color of the brick that was hit

when collision when high.

Whenever there is a collision, if the color of the brick is not magenta, then the

score in increased by pspeed. In the Super Breakout game, the current score is

displayed on the lower 32 bits of the LED hex display, and the high score is shown on

the upper 32 bits (see LEDdisplay.v).

2.2.14 speed.v

(Eddie)

This module changes the ball’s velocity in the horizontal direction (x-velocity)

depending on the paddle’s speed on ball-paddle impact. Essentially, this module

simulates a frictional coefficient on the paddle: if the paddle and ball are moving in

the same direction, the ball’s x-velocity increases; if the two are moving in different

directions, the x-velocity decreases. The amount of change is directly proportional to

the paddle’s speed. The most important function of the speed module is to provide a

varied gameplay experience.

2.3 System

2.3.1 Hex2Dec and Tencounter

(Eddie)

The game generates a 32-bit score output on the FPGA that the player can view

at any time. However, the provided numerical LED display module only outputs a

32-bit input as an 8-digit hexadecimal number. Most users cannot quickly convert a

27

hexadecimal number to its integer equivalent, so the Hex2Dec module converts the

32-bit hex input to an 8-digit integer, encoded such that each digit is represented as a

4-bit value. As an example, the Hex2Dec module would convert the 8-bit

hexadecimal number 8h5A to 8h90, because 90 is the decimal equivalent of 5A.

Each tencounter stores a single decimal digit. When a tencounter’s input is

asserted high on a rising clock edge, the tencounter increments its internal 4-bit

output register by one. If cin is high and the internal register value is 4’h9, the

register resets to zero and cout gets asserted high for one clock cycle. When several of

these blocks are connected in series, each cout acts as a counter that pulses at

one-tenth the rate of its own input.

The Hex2Dec module connects eight tencounters in series and pulses one input

into the system every clock cycle for x cycles, where x is the size of the 8-bit input.

The eight 4-bit tencounter outputs are concatenated to create a 32-bit output as

shown in Figure 9. Therefore, Hex2Dec requires (x / 27,000,000) seconds to generate

a correct output, using a 27-MHz clock.

2.3.2 LED Display

(Eddie)

During gameplay, the user should be able to view his or her score, while in other

modes of operation the user might want to view the current mode or check the

current high score. The LEDdisplay module controls the FPGA LED display unit,

allowing the project and user to switch between hexadecimal and character output at

any time. The 6.111 handouts include modules that display each type of output, but

no method to switch between the two. In addition, the character output depends on

the current mode of operation and game state.

LEDdisplay’s primary function is to act as a two-input multiplexer, controlled by

28

Figure 9: Timing and Structure of Hex2Dec

the “menu display” input bit. If menu display is high, characters are visible on the

display; otherwise, a hexadecimal number appears. In the default case, if “Game

Mode” is active and the game has not ended, the current score and high score appear

as the right and left eight digits, respectively. Otherwise, the current mode of

operation or game-ending state (win or loss) appears as ASCII character output. The

user may press Button 0 at any time to switch between the two types of output.

The module also determines which character string to output at any point,

depending on the mode of operation: “Filter Mode,” “Paint Mode,” “Camera Mode,”

and “Game Mode.” Note that “Game Mode” is only visible when the user presses the

display-toggle button during game operation. In addition, if the player beats the

game or loses, “You Win!!!” or “Game Over :-(“ are visible, respectively, in addition

to the on-screen intertitles.

29

2.3.3 NegEdgeDetector

(Eddie)

When this simple module detects a negative edge, it generates a quick pulse. For

example, NegEdgeDetector pulses the frame clock whenever the vsync signal from the

XVGA module transitions from high to low.

2.4 Paint Mode

2.4.1 Block Test

(Eddie)

This module generates the output for Paint Mode, which is also used in Camera

Mode. In Paint Mode, the user moves a white-square cursor around a black

background. By setting three of the FPGA switches, the user can define a 3-bit

drawing color. The cursor will then leave a trail in the defined color. (This process is

detailed in the TrackerBlob module description.) The canvas can be cleared at any

time by pressing Button 3.

Two sub-modes of operation are possible in Paint Mode: Position Mode, which

simply places the cursor at the point calculated by the centerofmass module; and

Velocity Mode, which moves the cursor around the screen according to the direction

and speed determined by the COMVelocity module. These sub-modes creatively

demonstrate the functionality of the controller modules, and allow the user to test

the controller before playing a game. In addition, Camera Mode combines the RGB

camera output with the paint canvas for a fun and entertaining mini-game.

2.4.2 HighForFrame

(Eddie)

30

This module holds an input high for one full frame-clock cycle, as shown in Figure

10. This function is generally used to hold an asynchronous user input stable for an

extended period of time.

Figure 10: HighForFrame timing diagram

2.4.3 TrackerBlob

(Eddie)

TrackerBlob is a specialized sprite controller that remembers the path of the

cursor sprite in Paint Mode and Camera Mode. The module updates a BRAM that

stores 3-bit color information for each 16 by 16 pixel block on the 1024 by 768 display.

3 Testing and Debugging

3.1 Eddie

One of the biggest problems I faced during the controller implementation step was

modifying the pre-existing camera-to-ZBT code, because I had to quickly learn the

inner-most details of over ten modules so that I knew exactly what to modify to

convert our YCrCb camera output to RGB. Once I got the RGB information, I spent

days playing with the FPGA switches in order to determine appropriate cut-off

parameters for the filter module. By accident, I discovered that the analog filter

31

provided by tuning the camera out-of-focus significantly removed the amount of noise

we had to process. I shared this finding with other members of the course, who I

believe were all able to utilize this camera feature.

My center-of-mass module turned out to be far less time-consuming than I had

anticipated, although the dividers took some time to generate. Unfortunately, these

two dividers (one for each axis) quadrupled the compile-time of our project, which

made further testing in other areas extremely irritating. The dividers also

experienced occasional ”Place and Route” technical difficulties, depending on how the

Xilinx tools decided to wire the project. These difficulties usually worked themselves

out in later compilations. Due to the linear nature of my design, I could not test any

module without completing all of the previous modules, and errors in supposedly

flawless designs became immediately apparent when I tried to use those outputs in

later modules. As the number of modules in my chain grew, I found myself in a

negative feedback loop that led to surprising improvements in my original designs. I

believe that the linearity of my project was invaluable to the design process, but only

because my initial plans were admittedly inefficient.

After finishing the controller, I created some auxiliary features for the project,

including ”Paint Mode,” extra levels, the LED displays, intertitles, and sound effects.

By far the most difficult module to implement was the intertitle capability. I

eventually used a MATLAB script to convert a Microsoft Paint bitmap file to a COE

memory initialization file, but the process of discovering the MATLAB script,

creating the images in Paint, and figuring out the display timing delays took me

approximately thirty hours to complete. In retrospect, the reason this process took so

long was because I eventually realized that in order to create a clear but

space-efficient image, I had to start with a 256 x 192 pixel image (1/16 screen area)

and expand each pixel to a 4 x 4 pixel block. Once I overcame this hurdle, the rest

32

was relatively easy.

My favorite auxiliary module is the hexadecimal-to-base-10 conversion unit.

While this module is surprisingly simple to understand, discovering the algorithm and

perfecting the process became an arduous ordeal. At one point, I calculated that a

64-bit hex number would require several millenia to finish conversion, and shortly

thereafter settled with a 32-bit conversion system. I used ModelSim to test the

functionality before integrating the code into the rest of the project, and found that I

had no problems with the integration step.

Finally, one of my larger tasks was to combine the controller, game, and auxiliary

modules into a single final project. I was amazed that this step worked almost

perfectly on the first try, except for minor glitches that I found without difficulty the

second time around. I have no doubt that this ease was entirely due to the fact that

Irene and I had decided early on to modularize our code as much as possible; in other

words, we strictly limited the amount with which the game and controller depended

on each other. In terms of the overall structure of our project, I believe that

modularization was our best design decision.

3.2 Irene

First and foremost, my largest problem was pipelining. Besides that, the only other

serious issue I really had was collision detection.

Initially, I tried collision detection by shifting the ball to the edge of the brick it

hit, in the case of a collision. This method proved glitchy and unreliable, especially

when the ball moved diagonally and, although it appeared to hit two bricks, basically

skipped right through the obstacles. I managed to get standard collision detection

(clearly horizontal or vertical collisions) working almost immediately, but almost a

month passed before I was able to implement diagonal collision detection. I

33

experimented with several methods, including pixel overlapping. However, these

methods all let to strange and unanticipated behavior, so I decided to scrap that idea

and start over once I had cleared my mind. I realized that the best way to implement

diagonal collisions was to go case-by-case through all the different situations and

instantiate a priority system, whereby the ball could never collide with more than one

brick at a time. This system worked because if the ball hit one brick in the diagonal

case, it would inevitably bounce off that brick and hit an adjacent brick if it existed.

(See the figure in the Super Breakout module description.)

Another issue I had was with sprite display. For weeks, my sprites were glitchy

and my bricks did not display properly. I eventually discovered that the problem lay

with the sprite BRAMs; I was not allowing enough time for the BRAMs to access

and write information, and as such messed up the whole program. I tested several

different combinations of latency cycles across the board, and eventually solved the

sprite display problem.

Pipelining fixed my display issues but created serious problems when I tried to

modularize the Super Breakout module. The problem with this module is that it is

extremely difficult to modularize due to the linear nature of the design as well as

because many modules share the same registers and inputs. I decided to implement a

large linear FSM, with several empty states in between to create the necessary

latency cycles to solve my display problems. While the code for superbreakout.v is

lengthy, I found that this method worked best both for debugging and for clarity,

since the counters clearly indicated what would happen on the next clock cycle.

34

4 Conclusion

By far, the best idea we had was to modularize our code. As we mentioned in the

”Testing & Debugging” section, isolating the controller and the game allowed the two

of us to work completely independently for more than a month, but we needed less

than an hour to combine the final versions of each part. The modularization was not

exactly as clean as we had hoped, because the FPGA inputs and outputs, as well as

the various modes of operation, strongly interacted with many of the project

modules. However, we believe that modularization was a very important part of our

successful group collaboration, and we recommend this strategy to future teams.

We found ourselves with slightly more free time at the end of the semester than

we had originally anticipated. This freedom caused several problems, however. We

reached an addictive point where we could not stop adding extra features to the

game. We eventually stepped back and declared a moratorium on additions, although

perhaps by then it was already too late; for the last few days of the project, we

decided to focus only on fixing the small glitches and timing issues that plagued the

whole system, and we believe that we did so successfully.

Pipelining turned out to be our biggest problem, especially when a lack thereof

severely hampered our efforts to display sprites on the screen. We spent weeks trying

to figure out why the ball did not display correctly in our game. Interestingly, once

we found the solution to our problem – pipelining – we only needed a few hours to fix

all the bugs. We believe that this would not have been possible without the in-class

lectures on timing and pipelining, and the real-world exposure to a theoretical

problem we discussed in class helped to solidify the concept in our minds. Instead of

understanding the problem and being able to draw pipelined diagrams (a la 6.004),

we were placed in a situation where we actually had to implement the material we

had learned. For both of us, this realization was one of the most interesting parts of

35

the project, because we were finally able to look past the video game and see the

engineering and educational implications of our project.

Although we learned a great deal during the course of the project, we had a lot of

fun implementing our design. Even though the two of us essentially cohabited in the

laboratory (along with Gim Hom, Cassie Huang, Javier Castro, and Kevin Miu, our

unflagging sources of moral and technical support), we did so only because we really

enjoyed what we were creating. Of course, when the final product is a video game,

testing becomes far more interesting! In the end, the two of us emerged from this

experience looking forward to our next design projects, whatever they might be.

36

A Verilog Code

The following appended code is the Verilog that we wrote or modified for the entire

project, in alphabetical order. Each of these modules is described in further detail in

Section 2 of this report.

A.1 block detector.v

// block_detector.v
// 6.111 Fall 2006 Final Project
// Module created by Irene Fan

/*
This module divides the screen up into a grid of 8 by 24 blocks:
given a pixel, the module returns the coordinates of the block in
which the pixel is located. (Each block is 128 by 32 pixels and
either displays a brick or doesn’t.) Performing this change of
coordinates let’s you ignore the individual pixels and work with
bricks instead, which is much more intuitive.
Inputs:

hcount, vcount (from the xvga module; which pixel are we
currently working with)

Outputs:
grid_x, grid_y: the column and row of the block on the screen in

which hcount and vcount are located
*/

module block_detector(hcount, vcount, grid_x, grid_y);
input [10:0] hcount;
input [9:0] vcount;
output [2:0] grid_x; // 0 through 7, for the 8 bricks across
output [4:0] grid_y; // 0 through 23

assign grid_x = hcount[9:7]; // divide hcount by 128 and the top bit
// isn’t used

assign grid_y = vcount[9:5]; // divide vcount by 32
endmodule

37

A.2 block test.v

// block_test.v
// 6.111 Fall 2006 Final Project
// Module created by Eddie Fagin

/* This module generates the output for "Paint Mode." The user moves a white
square around a black background to paint a picture in seven possible
non-black colors. You can paint in two possible modes: (1) position - the
pointer moves to the current frame’s center of light mass from the
camera output; (2) velocity - the pointer moves relative to light motion,
much like pushing a block around a room. In vel-mode, the square moves
differently for each of the 16 possible velocity inputs from the controller,
and allows the user to get a feel for the controller before playing a game.
This is also useful when determining how far away the user should stand from
the camera.
Inputs

vclock: 65-MHz system clock
frameclk: goes high at the end of each frame (negative edge of vsync)
reset: system reset
velocity: 4-bit speed and direction representation.

See the code for more details.
hcount, vcount: current VGA output position
color: the three-bit draw color set by switch[6:4]
mode: draw mode - if on, position ("mouse pointer") based motion.

if off, velocity-based motion ("pushing a block")
comX, comY: the current center of pixel "mass" for this frame,

used in position mode
Ouputs

pixel: determines the color of the current coordinates;
eight possible values.

*/

module block_test (vclock,frameclk,reset,velocity,
hcount,vcount,color,mode,comX,comY,pixel);

input vclock;
input frameclk
input reset, mode;
input [3:0] velocity;
input [10:0] hcount,comX;
input [9:0] vcount,comY;
input [2:0] color;
output [2:0] pixel;

// Set up constants for resolution, block size and speeds.
parameter HMAX = 10’d1023;
parameter VMAX = 10’d767;
parameter ball_size = 4’h8;
parameter slow_speed = 4’h5;
parameter normal_speed = 4’hA;
parameter fast_speed = 4’hF;

reg [10:0] ball_x;
reg [9:0] ball_y;
wire [2:0] pixel;

// This block creates a white "ball" sprite. It’s actually a 16 x 16 block,
// calibrated from the top left corner.
// Adjustments to ball_x and ball_y will move the block in two dimensions.
trackerblob ball0 (ball_x, ball_y, hcount, vcount, vclock, reset,

color, ~(velocity[3:2] == 0), pixel);

38

defparam ball0.WIDTH = ball_size;
defparam ball0.HEIGHT = ball_size;
defparam ball0.COLOR = 3’b111; // white

always @ (posedge vclock) begin
// On a reset, center the ball
if (reset) begin

ball_x <= (HMAX - ball_size) >> 1’b1;
ball_y <= (VMAX - ball_size) >> 1’b1;

end

// Each frame, update block position. Checks boundary conditions so that
// block stays on screen.
else if (frameclk) begin

// position-based motion
if (mode) begin

ball_x <= 10’d745 - comX;
ball_y <= comY;

end

// velocity-based motion
// case blocks are in the order slow, medium, fast for each direction
else
case (velocity) // velocity = {speed, direction}

// speed: (00) zero (01) slow (10) medium (11) fast
// direction: (00) up (01) right (10) down (11) left

// move up
4’b0100: ball_y <= (ball_y < slow_speed) ?

ball_y : ball_y - slow_speed;
4’b1000: ball_y <= (ball_y < normal_speed) ?

ball_y : ball_y - normal_speed;
4’b1100: ball_y <= (ball_y < fast_speed) ?

ball_y : ball_y - fast_speed;
// move down
4’b0110: ball_y <= (ball_y > VMAX - slow_speed - ball_size) ?

ball_y : ball_y + slow_speed;
4’b1010: ball_y <= (ball_y > VMAX - normal_speed - ball_size) ?

ball_y : ball_y + normal_speed;
4’b1110: ball_y <= (ball_y > VMAX - fast_speed - ball_size) ?

ball_y : ball_y + fast_speed;
// move left
4’b0111: ball_x <= (ball_x < slow_speed) ?

ball_x : ball_x - slow_speed;
4’b1011: ball_x <= (ball_x < normal_speed) ?

ball_x : ball_x - normal_speed;
4’b1111: ball_x <= (ball_x < fast_speed) ?

ball_x : ball_x - fast_speed;
// move right
4’b0101: ball_x <= (ball_x > HMAX - slow_speed - ball_size) ?

ball_x : ball_x + slow_speed;
4’b1001: ball_x <= (ball_x > HMAX - normal_speed - ball_size) ?

ball_x : ball_x + normal_speed;
4’b1101: ball_x <= (ball_x > HMAX - fast_speed - ball_size) ?

ball_x : ball_x + fast_speed;

// default: no change (speed = 0)
endcase

end
end

endmodule

39

A.3 centerofmass.v

// centerofmass.v
// 6.111 Fall 2006 Final Project
// Module created by Eddie Fagin

/* This module calculates the center of "mass" of
certain non-black pixels on-screen each frame.
The pixel colors fed to this module have already
been processed by an intensity filter, so all
all inputs are solid colors (red, green, or blue).
For the purposes of our project, the input pixels
are green. Therefore, this module finds the center
of all green pixels. I used two divider modules
(generated by CoreGen) that divides two 32-bit numbers.
Every pixel has the same "weight", so I just summed up
(separately) the x- and y- coordinates of every qualified
pixel and divided by the total number of such pixels.
Inputs

pixel: the 8-bit filtered and processed pixel from the camera
x, y: the coordinates of the aforementioned pixel

(on an imaginary 1024x768 screen)
clk: 65-MHz system clock
frameclk: goes high at the end of each frame

(negative edge of vsync)
reset: system reset

Ouputs
comX, comY: the current center of pixel "mass," updated every frame.

*/

module centerofmass(pixel, x, y, clk, frameclk, reset, comX, comY);
input[7:0] pixel;
input[10:0] x;
input[9:0] y;
input clk, frameclk, reset;
output [10:0] comX;
output [9:0] comY;

reg[10:0] comX;
reg[9:0] comY;
// accumulating registers
// x: 11 bit values * at most 2^10 pixels.
reg[21:0] comXinc;
reg[19:0] comYinc;

// Weight is just a count of the current number of active pixels.
// center of mass = sum of values / weight
reg[19:0] weight;

// The two dividers, generated via CoreGen,
// continuously calculating a quotient.
// Note: these things are HUGE! They take a long time to compile.
wire [19:0] xremainder_not_used, yremainder_not_used;
wire xrfd, yrfd;
wire [21:0] xquotient;
wire [19:0] yquotient;
averager divX(comXinc,weight,xquotient,xremainder_not_used,clk,xrfd);
averager2 divY(comYinc,weight,yquotient,yremainder_not_used,clk,yrfd);

always @ (posedge clk) begin

40

if (reset) begin
comX <= 11’d0;
comY <= 10’d0;
{comXinc, comYinc} <= 42’d0;
weight <= 20’d0;

end

// Each frame, update the center of pixel mass and reset the counters.
// The (weight <= 4’hf) is simply a filter that leaves the COM
// unchanged if the number of considered pixels is less than 16.
// (We assume that it’s just noise.)

else if (frameclk) begin
comXinc <= 22’d0;
comYinc <= 20’d0;
comX <= (weight <= 4’hf) ? comX : xquotient[10:0];
comY <= (weight <= 4’hf) ? comY : yquotient[9:0];
weight <= 20’d0;
end

// Each pixel is replicated four times
// (a.k.a my quick-and-dirty camera processing strategy)

// so we can just consider every fourth pixel in our calculation.
else if (pixel && x[1:0] == 2’b00) begin
weight <= weight + 1’b1;
comXinc <= comXinc + x;
comYinc <= comYinc + y;
end
end
endmodule

41

A.4 circle.v
// circle.v
// 6.111 Fall 2006 Final Project
// Module created by Irene Fan and Eddie Fagin

/*
This module displays a 8x8 circle from a ROM. To avoid glitches, it
loads the data from the ROM into a 64 bit register when vsync is
low, then reads the data in the next frame. Default circle color is
white.
Inputs:

display -- if 1, circle is shown on screen
vclock -- 65 Mhz system clock
reset -- reset signal
frameclock -- pulses high at the end of every frame
x, y -- top left coordinates of the 8x8 box around the circle
hcount, vcount -- current x, y pixel

Outputs:
pixel -- pixel output for the ball

*/

module circle(display, vclock, reset, frameclk, x, y, hcount, vcount, pixel);
input display; // should the circle be shown on screen?
input vclock; // 65Mhz clock
input reset; // on reset, go back to the start of the ROM
input frameclk; // indicates new frame
input [10:0] x; // x-coordinate of the circle
input [9:0] y; // y-coordinate of the circle
input [10:0] hcount; // current x-pixel
input [9:0] vcount; // current y-pixel
output [2:0] pixel; // color output for the circle at this

// (hcount, vcount) coordinate

parameter COLOR = 3’b111; // default ball color is white
parameter start_address = 6’d0;

reg [2:0] pixel;
reg [5:0] address; // address for the circle’s ROM
wire data_out; // data coming from the ROM
reg [63:0] ball_data; // register gets loaded with circle’s data
reg [5:0] counter; // counter for loading data into register
reg read_cycle; // switch on and off to add a delay for

// reading from memory

// ROM for the 8x8 pixel circle
circle8 ball2(.addr(address), .clk(vclock), .dout(data_out));

always @ (posedge vclock) begin
if(reset) begin // Reset

address <= start_address;
ball_data <= 64’d0;
counter <= 6’d0;
read_cycle <= 1’b0;
pixel <= 3’b000;

end

// Every frame, reset the counter and ball data, and set the 1st
// address from which to read
else if (frameclk) begin

counter <= 6’d0;
address <= 6’d0;

42

read_cycle <= 1’b1;
ball_data <= 64’d0;

end

// Alternate between read_cycle and the next statment -- during
// the read cycle, set the address for the ROM and copy data_out
// into the register
else if (read_cycle) begin

read_cycle <= 1’b0;
address <= (address == 63) ? 8’d0 : address + 1’b1;
ball_data[0] <= data_out;

end

// Between read cycles, give the memory time to fetch the data
// from the new address; shift the contents of the register up 1
// "slot" so the data from the ROM is slowly loaded into the
// register
else if (counter < 8’d63) begin

counter <= counter + 1’b1;
read_cycle <= 1’b1;
ball_data <= ball_data << 1’b1;

end

// When hcount, vcount, are within the 8x8 square to the right
// and below the x,y coordinates of the circle, look at the
// register to see if there is a pixel in that location --
// if so, set pixel to the right color
if(hcount >= x && hcount < x + 4’h8 && vcount >= y

&& vcount < y + 4’h8 && display) begin
pixel <= ball_data[0] ? COLOR : 3’d0;
ball_data <= ball_data >> 1’b1; // discard the pixel data

// once it’s been looked at
end
else pixel <= 1’b0;

end
endmodule

43

A.5 debounce.v

///
//
// Pushbutton Debounce Module
// provided by 6.111 staff for various lab assignments
// NOT CHANGED BY EDDIE AND IRENE!
//
//

module debounce (reset, clk, noisy, clean);
input reset, clk, noisy;
output clean;
parameter NDELAY = 650000;
parameter NBITS = 20;

reg [NBITS-1:0] count;
reg xnew, clean;

always @(posedge clk)
if (reset) begin xnew <= noisy; clean <= noisy; count <= 0; end
else if (noisy != xnew) begin xnew <= noisy; count <= 0; end
else if (count == NDELAY) clean <= xnew;
else count <= count+1;

endmodule

44

A.6 delayN.v

// The delayN module delays the "in" signal by four clock cycles.
// We use this for delaying hsync, vsync, and blank in our project.
// This module was included with the ZBT sample package from the
// 6.111 Fall 2005 handouts and we didn’t change it.

module delayN(clk,in,out);
input clk;
input in;
output out;
parameter NDELAY = 3;

reg [NDELAY-1:0] shiftreg;
wire out = shiftreg[NDELAY-1];

always @(posedge clk)
shiftreg <= {shiftreg[NDELAY-2:0],in};

endmodule

45

A.7 det brick din.v
// det_brick_din.v
// 6.111 Fall 2006 Final Project
// Module created by Irene Fan

/*
This module specifies what the next color of a block should be if a
brick of the specified color is hit.

Red bricks turn black (the brick "breaks" and is no longer
displayed), yellow bricks turn red, green bricks turn yellow, teal
bricks turn green, blue bricks turn teal, and magenta bricks stay
magenta (they never break).
Inputs:

vclock -- system clock
color -- current brick color

Outputs:
next_brick_color -- what color this block should turn if the

brick is hit
*/

module det_brick_din(vclock, color, next_brick_color);
input vclock; // 65 Mhz clock
input [2:0] color; // current brick color
output [3:0] next_brick_color; // what color the brick should become

reg [3:0] next_brick_color;

// case statement takes the current brick color and returns next one
always @ (posedge vclock)

case(color)
3’b100: //red

next_brick_color <= 4’b0000; // red turns black
3’b110: //yellow

next_brick_color <= 4’b1100; // yellow turns red
3’b010: //green

next_brick_color <= 4’b1110; // green turns yellow
3’b011: //teal

next_brick_color <= 4’b1010; // teal turns green
3’b001: //blue

next_brick_color <= 4’b1011; // blue turns teal
3’b101: //magenta

next_brick_color <= 4’b1101; // magenta stays magenta
default:

next_brick_color <= 4’b0000;
endcase

endmodule

46

A.8 detect bombs.v
// detect_bombs.v
// 6.111 Fall 2006 Final Project
// Module created by Irene Fan

/*
This module detects when the pixels of one specified object overlap
with pixels of a second specified object.
The module is used for generating a signal that indicates when
bombs, expanders, and life capsules hit the paddle.
Inputs:

object1_pixel -- pixels from 1st object
object2_pixel -- pixels from 2nd object

Outputs:
hit -- goes high when 2 pixels overlap

*/

module detect_bombs(object1_pixel, object2_pixel, hit);
input [2:0] object1_pixel; // 1st object’s pixels
input [2:0] object2_pixel; // 2nd object’s pixels
output hit; // 1 if both objects pixels overlap

// OR each object’s pixels to see if the color is black.
// If neither color is black, then there’s been an overlap!

assign hit = ((|object1_pixel) & (|object2_pixel));
endmodule

47

A.9 display.v

// display.v
// 6.111 Fall 2006 Final Project
// Module created by Irene Fan

/* This module creates the bricks from the contents of a dual-port RAM
which contains information for every block; it also outputs the
pixels of all other objects on screen. The module also handles
switching to and from intertitles to generate a full 24-bit color
game output to the VGA.
Inputs:

vclock -- system clock
reset -- reset signal
frameclk -- pulses high when vsync goes low
hcount, vcount -- current pixel
grid_x, grid_y -- current block to look at
brick_data_out -- information about the particular block and is

4 bits -- 1 bit to toggle the display and 3 bits of color
paddle_pixel -- pixel for the paddle
ball_pixel -- pixel for the ball
title_pixel -- pixel for intertitles
bomb1_pixel, bomb2_pixel, bomb3_pixel, bomb4_pixel,

bomb5_pixel -- pixel for the bombs
expander_pixel -- pixel for the expander
extralife_pixel -- pixel for the life capsule
fade_on -- 1 if the ball fades (gradient) as it falls down

the screen
title_on -- 1 if an intertitle should be displayed on screen

Outputs:
brick_address -- address for accessing the brick memory
pixel -- combined pixel output

*/

module display(vclock, reset, frameclk, hcount, vcount, grid_x,
grid_y, brick_data_out, paddle_pixel, ball_pixel,
title_pixel, bomb1_pixel, bomb2_pixel, bomb3_pixel,
bomb4_pixel, bomb5_pixel, expander_pixel,
extralife_pixel, fade_on, title_on, brick_address,
pixel);

input vclock;
input reset;
input frameclk;
input [10:0] hcount;
input [9:0] vcount;
input [2:0] grid_x;
input [4:0] grid_y;
input [3:0] brick_data_out;
input [2:0] paddle_pixel;
input [2:0] ball_pixel;
input [2:0] title_pixel;
input [2:0] bomb1_pixel, bomb2_pixel, bomb3_pixel, bomb4_pixel,

bomb5_pixel;
input [2:0] expander_pixel, extralife_pixel;
input fade_on;
input title_on;

output [9:0] brick_address;
output [23:0] pixel; // 24-bit VGA output

48

reg [23:0] pixel;

wire [2:0] pixel_3; // 3-bit game pixel
wire [23:0] pixel_24; // 24-bit version of the 3-bit game pixel
wire [23:0] fullball_pixel; // 24-bit version of the ball pixel
reg [7:0] counter; // fade-in counter for intertitles

reg [2:0] last_grid_x; // keeps track of the grid the pixel is in
reg [4:0] last_grid_y;
reg [2:0] brick_pixel;
reg [9:0] brick_address;

// Each 128 by 32 block has a 2 pixel border around it
assign border = ((hcount[6:1] == 6’b111111) || (hcount[6:1] == 6’d0)

|| (vcount[4:1] == 4’b1111) || (vcount[4:1] == 4’d0))?
1’b1: 1’b0;

// Besides the border, there is a 8 pixel rim (used for magenta blocks
// which have a "hollow" center)
assign rim = ((hcount[6:3] == 4’b1111) || (hcount[6:3] == 4’d0)

|| (vcount[4:3] == 2’b11) || (vcount[4:3] == 2’d0))?
1’b1 : 1’b0;

always @ (posedge vclock) begin
if (reset) begin

last_grid_x <= 3’d0;
last_grid_y <= 5’d0;
brick_address <= 10’d0;
counter <= 8’d0;

end

// If grid_x or grid_y changes, recalculate address
else if((grid_x != last_grid_x) || (grid_y != last_grid_y)) begin

last_grid_x <= grid_x;
last_grid_y <= grid_y;
brick_address <= grid_y << 3 + grid_x;

end
else brick_address <= brick_address;

// brick_data_out[3] is 1 if that block has a brick to be displayed
// If a brick is there, draw black for the border and black for the
// insides of magenta bricks, otherwise fill the rest of the block
// in with the color specified by brick_data_out[2:0]
brick_pixel <= brick_data_out[3]?

(border? 3’d0 : ((~rim && brick_data_out[2:0] == 3’b101)?
3’d0 : brick_data_out[2:0]))

: 3’d0;

// Eddie’s additions:
// If intertitles are supposed to be displayed, fade them in.
// The fade process takes approximately four seconds.
if (title_on) begin

counter <= (frameclk & (counter != 8’hff)) ? counter + 1 : counter;
pixel <= pixel_24 & {counter,counter,counter};

end
// otherwise, display all the in-game objects, merging in the ball.

else begin
pixel <= (pixel_24) ? pixel_24 : fullball_pixel;
counter <= 8’d0;

end
end

// convert the ball pixel to a 24-bit value, and if necessary,
// fade the ball depending on its vertical location.

49

assign fullball_pixel = fade_on ? {~vcount[9:2]&{8{ball_pixel[2]}},
~vcount[9:2]&{8{ball_pixel[1]}},
~vcount[9:2]&{8{ball_pixel[0]}}} :
{{8{ball_pixel[2]}},
{8{ball_pixel[1]}},
{8{ball_pixel[0]}}};

// if a title screen should be on, show title_pixel; otherwise, the pixel
// output is the combination of all pixel outputs
assign pixel_3 = title_on ? title_pixel :

(paddle_pixel | brick_pixel | bomb1_pixel |
bomb2_pixel | bomb3_pixel | bomb4_pixel |
bomb5_pixel | expander_pixel | extralife_pixel);

// extend the three-bit game pixel to a 24-bit value without changing colors
assign pixel_24 = {{8{pixel_3[2]}}, {8{pixel_3[1]}}, {8{pixel_3[0]}}};

endmodule

50

A.10 drop game object.v

// drop_game_object.v
// 6.111 Fall 2006 Final Project
// Module created by Irene Fan

/*
This module handles dropping and managing bombs/expanders/life
capsules in the game. There can be up to 5 bombs, 1 expander, and 1
lifecapsule on the screen at a time. Bombs shorten the paddle when
they hit it, expanders lengthen the paddle, and lifecapsules grant
the player an extra life.
The module makes dropping objects in the game very easy -- in
superbreakout.v, I just pulse either drop_bomb, drop_expander, or
drop_lifecapsule high and then set the grid_x and grid_y it from
which the object is supposed to fall.
Inputs:

vclock -- system clock
reset -- reset signal
update_clock -- when this pulses high, it’s time to update

the position of all the bombs/expanders/life capsules;
happens once a frame

has_game_started -- is the game in play
level_complete -- 1 if player reaches the end of the level
force_next_level -- 1 when player skips to the next level

without finishing the current one
loselife -- 1 if player loses a life
drop_bomb, drop_expander, drop_lifecapsule -- 1 to drop a

bomb, expander, or lifecapsule, respectively
drop_gridx, drop_gridy -- x and y coordinates of the block

that the object should drop from
shorten_paddle_b1, shorten_paddle_b2, shorten_paddle_b3,

shorten_paddle_b4, shorten_paddle_b5 -- 1 when a bomb1,
bomb2, bomb3, bomb4, bomb5 hits the paddle, respectively

lengthen_paddle -- 1 when expander hits the paddle
life_up -- 1 when lifecapsule hits the paddle

Outputs:
bomb1_display, bomb2_display, bomb3_display, bomb4_display,

bomb5_display -- controls whether each bomb is displayed
expander_display, extralife_display -- 1 if expander,

lifecapsule should be displayed on screen
bomb1_x, bomb2_x, bomb3_x, bomb4_x, bomb5_x, expander_x,

extralife_x -- x-coordinates for the top left corner
of these sprites

bomb1_y, bomb2_y, bomb3_y, bomb4_y, bomb5_y, expander_y,
extralife_y -- y-coordinates for the top left corner
of these sprites

*/

module drop_game_object(vclock, reset, update_clock, has_game_started,
level_complete, force_next_level, loselife,
drop_bomb, drop_expander, drop_lifecapsule,
drop_gridx, drop_gridy, shorten_paddle_b1,
shorten_paddle_b2, shorten_paddle_b3,
shorten_paddle_b4, shorten_paddle_b5,
lengthen_paddle, life_up, bomb1_display,
bomb2_display, bomb3_display, bomb4_display,
bomb5_display, expander_display,
extralife_display, bomb1_x, bomb2_x, bomb3_x,
bomb4_x, bomb5_x, expander_x, extralife_x,

51

bomb1_y, bomb2_y, bomb3_y, bomb4_y, bomb5_y,
expander_y, extralife_y);

input vclock, reset, update_clock, has_game_started,
level_complete, force_next_level, loselife;

input drop_bomb, drop_expander, drop_lifecapsule;
input [2:0] drop_gridx;
input [4:0] drop_gridy;
input shorten_paddle_b1, shorten_paddle_b2, shorten_paddle_b3,

shorten_paddle_b4, shorten_paddle_b5, lengthen_paddle,
life_up;

output bomb1_display, bomb2_display, bomb3_display, bomb4_display,
bomb5_display, expander_display, extralife_display;

output [10:0] bomb1_x, bomb2_x, bomb3_x, bomb4_x, bomb5_x,
expander_x, extralife_x;

output [9:0] bomb1_y, bomb2_y, bomb3_y, bomb4_y, bomb5_y, expander_y,
extralife_y;

// Parameters
parameter screen_height = 10’d768; // screen is 1024 x 768 pixels
parameter brick_width = 8’d128; // brick is 128 pixels wide
parameter bomb_speed = 4’d12; // bombs fall 12 pixels/frame
parameter bomb_dimension = 4’d8; // bombs are 8x8 pixels
parameter expander_speed = 4’d12; // expanders fall 12 pixels/frame
parameter expander_dimension = 4’d8; // expanders are 8x8 pixels
parameter extralife_speed = 4’d12; // lifecapsules fall 12 pixels/frame
parameter extralife_dimension = 4’d8; // lifecapsules are 8x8 pixels
reg bomb1_display, bomb2_display, bomb3_display, bomb4_display,

bomb5_display, expander_display, extralife_display;
reg [10:0] bomb1_x, bomb2_x, bomb3_x, bomb4_x, bomb5_x, expander_x,

extralife_x;
reg [9:0] bomb1_y, bomb2_y, bomb3_y, bomb4_y, bomb5_y, expander_y,

extralife_y;

always @ (posedge vclock) begin

// On a reset or level change or when the player loses a life,
// clear the screen of bombs/expanders/life capsules
if(reset | (has_game_started & level_complete) |

force_next_level | loselife) begin
bomb1_display <= 0;
bomb2_display <= 0;
bomb3_display <= 0;
bomb4_display <= 0;
bomb5_display <= 0;
expander_display <= 0;
extralife_display <= 0;

end

// Display an object when it has been signaled to be dropped
// from a brick
else begin

// If a bomb is dropped, display the next bomb that is not
// yet on the screen (at most 5 can be falling down the
// screen at a time) from the top center of the brick
// specified by drop_gridx, drop_gridy
if(drop_bomb) begin

if(~bomb1_display) begin
bomb1_display <= 1’b1;
bomb1_x <= (drop_gridx << 7) +

52

((brick_width - bomb_dimension) >> 1);
bomb1_y <= drop_gridy << 5;

end
else if(~bomb2_display) begin

bomb2_display <= 1’b1;
bomb2_x <= (drop_gridx << 7) +

((brick_width - bomb_dimension) >> 1);
bomb2_y <= drop_gridy << 5;

end
else if(~bomb3_display) begin

bomb3_display <= 1’b1;
bomb3_x <= (drop_gridx << 7) +

((brick_width - bomb_dimension) >> 1);
bomb3_y <= drop_gridy << 5;

end
else if(~bomb4_display) begin

bomb4_display <= 1’b1;
bomb4_x <= (drop_gridx << 7) +

((brick_width - bomb_dimension) >> 1);
bomb4_y <= drop_gridy << 5;

end
else if(~bomb5_display) begin

bomb5_display <= 1’b1;
bomb5_x <= (drop_gridx << 7) +

((brick_width - bomb_dimension) >> 1);
bomb5_y <= drop_gridy << 5;

end
end

// If an expander is supposed to be dropped and there isn’t
// already one on the screen, drop it! This happens when a green
// brick is hit
else if(drop_expander && ~expander_display) begin

expander_display <= 1’b1;
expander_x <= (drop_gridx << 7) +

((brick_width - expander_dimension) >> 1);
expander_y <= drop_gridy << 5;

end

// If a life capsule is supposed to be dropped, drop one if
// there isn’t already one on screen -- happens when a blue
// brick is hit
else if(drop_lifecapsule && ~extralife_display) begin

extralife_display <= 1’b1;
extralife_x <= (drop_gridx << 7) +

((brick_width - extralife_dimension) >> 1);
extralife_y <= drop_gridy << 5;

end

// Move all the bombs/expanders/lifecapsules that are
// currently being displayed by updating their y-coordinate
// every frame (when update_clock is specified in
// superbreakout.v). Objects disappear when they either hit the
// paddle or get near the bottom of the screen
if(update_clock) begin

if(bomb1_display) begin
bomb1_y <= (bomb1_y + bomb_speed > screen_height)?

screen_height - bomb_dimension : bomb1_y + bomb_speed;
bomb1_display <= ~((bomb1_y >= screen_height - bomb_dimension)

|| shorten_paddle_b1);
end
if(bomb2_display) begin

53

bomb2_y <= (bomb2_y + bomb_speed > screen_height)?
screen_height - bomb_dimension : bomb2_y + bomb_speed;

bomb2_display <= ~((bomb2_y >= screen_height - bomb_dimension)
|| shorten_paddle_b2);

end
if(bomb3_display) begin

bomb3_y <= (bomb3_y + bomb_speed > screen_height)?
screen_height - bomb_dimension : bomb3_y + bomb_speed;

bomb3_display <= ~((bomb3_y >= screen_height - bomb_dimension)
|| shorten_paddle_b3);

end
if(bomb4_display) begin

bomb4_y <= (bomb4_y + bomb_speed > screen_height)?
screen_height - bomb_dimension : bomb4_y + bomb_speed;

bomb4_display <= ~((bomb4_y >= screen_height - bomb_dimension)
|| shorten_paddle_b4);

end
if(bomb5_display) begin

bomb5_y <= (bomb5_y + bomb_speed > screen_height)?
screen_height - bomb_dimension : bomb5_y + bomb_speed;

bomb5_display <= ~((bomb5_y >= screen_height - bomb_dimension)
|| shorten_paddle_b5);

end
if(expander_display) begin

expander_y <= (expander_y + expander_speed > screen_height)?
screen_height - expander_dimension :
expander_y + expander_speed;

expander_display <=
~((expander_y >= screen_height - expander_dimension)

|| lengthen_paddle);
end
if(extralife_display) begin

extralife_y <= (extralife_y + extralife_speed > screen_height)?
screen_height - extralife_dimension :
extralife_y + extralife_speed;

extralife_display <=
~((extralife_y >= screen_height - extralife_dimension)

|| life_up);
end

end
end

end
endmodule

54

A.11 expander blob.v

// expander_blob.v
// 6.111 Fall 2006 Final Project
// Module written by Eddie Fagin

/*
This module displays the icon for the expander, which lengthens the
paddle if caught. expander_blob.v is very similar to circle.v, but
uses a different ROM. At the end of every frame (when vsync goes low),
ROM data is loaded into a register and then read from the register
during the next frame as to avoid glitches.
Inputs:

display -- whether or not the expander should be displayed on screen
(becomes 1 when the expander is dropped from a brick)

vclock -- system clock
reset -- reset signal
frameclk -- pulses high when vsync goes low at the end of a frame
x, y -- x-y coordinates of top left corner or the 16x8 rom
hcount, vcount -- current pixel

Outputs:
pixel -- pixel color output for the current hcount, vcount

*/

module expander_blob(display, vclock, reset, frameclk, x, y, hcount, vcount, pixel);
input display; // 1 if expander should be displayed
input vclock; // 65Mhz clock
input reset; // reset signal -- go back to beginning of ROM
input frameclk; // 1 when vsync goes low at the end of a frame
input [10:0] x; // x, y coordinates of expander
input [9:0] y;
input [10:0] hcount; // current pixel coordinates
input [9:0] vcount;
output [2:0] pixel; // pixel output for expander

parameter COLOR = 3’b010; // default expander color is green
parameter start_address = 6’d0;

reg [2:0] pixel;
reg [6:0] address; // address for expander ROM
wire data_out; // data from ROM
reg [127:0] ball_data; // load ROM data into this register
reg [6:0] counter; // counter for ROM
reg read_cycle; // toggles on and off so to allot extra time

// for reading from ROM

// 16x8 ROM for expander
expander exp(.addr(address), .clk(vclock), .dout(data_out));

always @ (posedge vclock) begin
if(reset) begin // Reset

address <= start_address;
ball_data <= 128’d0;
counter <= 7’d0;
read_cycle <= 1’b0;
pixel <= 3’b000;

end

// At the end of every frame, start loading ROM contents into
// the register
else if (frameclk) begin

counter <= 7’d0;

55

address <= 7’d0;
read_cycle <= 1’b1;
ball_data <= 128’d0;

end

// Alternate between this case and the next one while loading data
// from the ROM to the register -- here, set the address and load
// the data_out into the register
else if (read_cycle) begin

read_cycle <= 1’b0;
address <= (address == 127) ? 7’d0 : address + 1’b1;
ball_data[0] <= data_out;

end

// In between read cycles while data, give the memory time to fetch
// the data and update the counter
else if (counter < 63) begin

counter <= counter + 1’b1;
read_cycle <= 1’b1;
ball_data <= ball_data << 1’b1;

end

// If the expander is supposed to be displayed, look at register
// for pixel data when hcount and vcount are within the 16x8 "box"
// to the left of x,y; otherwise display black
if (hcount >= x && hcount <= x + 4’hf &&

vcount >= y && vcount <= y + 3’b111 & display) begin
pixel <= ball_data[0] ? COLOR : 3’d0;
ball_data <= ball_data >> 1’b1;

end
else pixel <= 1’b0;

end
endmodule

56

A.12 finalproject.v

///
//
// 6.111 FPGA Labkit -- Template Toplevel Module
//
// For Labkit Revision 004
//
//
// Created: October 31, 2004, from revision 003 file
// Author: Nathan Ickes
//
//
//
// CHANGES FOR BOARD REVISION 004
//
// 1) Added signals for logic analyzer pods 2-4.
// 2) Expanded "tv_in_ycrcb" to 20 bits.
// 3) Renamed "tv_out_data" to "tv_out_i2c_data" and "tv_out_sclk" to
// "tv_out_i2c_clock".
// 4) Reversed disp_data_in and disp_data_out signals, so that "out" is an
// output of the FPGA, and "in" is an input.
//
// CHANGES FOR BOARD REVISION 003
//
// 1) Combined flash chip enables into a single signal, flash_ce_b.
//
// CHANGES FOR BOARD REVISION 002
//
// 1) Added SRAM clock feedback path input and output
// 2) Renamed "mousedata" to "mouse_data"
// 3) Renamed some ZBT memory signals. Parity bits are now incorporated into
// the data bus, and the byte write enables have been combined into the
// 4-bit ram#_bwe_b bus.
// 4) Removed the "systemace_clock" net, since the SystemACE clock is now
// hardwired on the PCB to the oscillator.
//
//
//
// Complete change history (including bug fixes)
//
// 2005-Sep-09: Added missing default assignments to "ac97_sdata_out",
// "disp_data_out", "analyzer[2-3]_clock" and
// "analyzer[2-3]_data".
//
// 2005-Jan-23: Reduced flash address bus to 24 bits, to match 128Mb devices
// actually populated on the boards. (The boards support up to
// 256Mb devices, with 25 address lines.)
//
// 2004-Oct-31: Adapted to new revision 004 board.
//
// 2004-May-01: Changed "disp_data_in" to be an output, and gave it a default
// value. (Previous versions of this file declared this port to
// be an input.)
//
// 2004-Apr-29: Reduced SRAM address busses to 19 bits, to match 18Mb devices
// actually populated on the boards. (The boards support up to
// 72Mb devices, with 21 address lines.)
//
// 2004-Apr-29: Change history started
//

57

///

module finalproject(beep, audio_reset_b,
ac97_sdata_out, ac97_sdata_in, ac97_synch,
ac97_bit_clock,
vga_out_red, vga_out_green, vga_out_blue, vga_out_sync_b,
vga_out_blank_b, vga_out_pixel_clock, vga_out_hsync,
vga_out_vsync,
tv_out_ycrcb, tv_out_reset_b, tv_out_clock, tv_out_i2c_clock,
tv_out_i2c_data, tv_out_pal_ntsc, tv_out_hsync_b,
tv_out_vsync_b, tv_out_blank_b, tv_out_subcar_reset,
tv_in_ycrcb, tv_in_data_valid, tv_in_line_clock1,
tv_in_line_clock2, tv_in_aef, tv_in_hff, tv_in_aff,
tv_in_i2c_clock, tv_in_i2c_data, tv_in_fifo_read,
tv_in_fifo_clock, tv_in_iso, tv_in_reset_b, tv_in_clock,
ram0_data, ram0_address, ram0_adv_ld, ram0_clk, ram0_cen_b,
ram0_ce_b, ram0_oe_b, ram0_we_b, ram0_bwe_b,
ram1_data, ram1_address, ram1_adv_ld, ram1_clk, ram1_cen_b,
ram1_ce_b, ram1_oe_b, ram1_we_b, ram1_bwe_b,
clock_feedback_out, clock_feedback_in,
flash_data, flash_address, flash_ce_b, flash_oe_b, flash_we_b,
flash_reset_b, flash_sts, flash_byte_b,
rs232_txd, rs232_rxd, rs232_rts, rs232_cts,
mouse_clock, mouse_data, keyboard_clock, keyboard_data,
clock_27mhz, clock1, clock2,
disp_blank, disp_data_out, disp_clock, disp_rs, disp_ce_b,
disp_reset_b, disp_data_in,
button0, button1, button2, button3, button_enter, button_right,
button_left, button_down, button_up,
switch,
led,
user1, user2, user3, user4,
daughtercard,
systemace_data, systemace_address, systemace_ce_b,
systemace_we_b, systemace_oe_b, systemace_irq, systemace_mpbrdy,
analyzer1_data, analyzer1_clock,

analyzer2_data, analyzer2_clock,
analyzer3_data, analyzer3_clock,
analyzer4_data, analyzer4_clock);

output beep, audio_reset_b, ac97_synch, ac97_sdata_out;
input ac97_bit_clock, ac97_sdata_in;

output [7:0] vga_out_red, vga_out_green, vga_out_blue;
output vga_out_sync_b, vga_out_blank_b, vga_out_pixel_clock,

vga_out_hsync, vga_out_vsync;

output [9:0] tv_out_ycrcb;
output tv_out_reset_b, tv_out_clock, tv_out_i2c_clock, tv_out_i2c_data,

tv_out_pal_ntsc, tv_out_hsync_b, tv_out_vsync_b, tv_out_blank_b,
tv_out_subcar_reset;

input [19:0] tv_in_ycrcb;
input tv_in_data_valid, tv_in_line_clock1, tv_in_line_clock2, tv_in_aef,

tv_in_hff, tv_in_aff;
output tv_in_i2c_clock, tv_in_fifo_read, tv_in_fifo_clock, tv_in_iso,

tv_in_reset_b, tv_in_clock;
inout tv_in_i2c_data;

58

inout [35:0] ram0_data;
output [18:0] ram0_address;
output ram0_adv_ld, ram0_clk, ram0_cen_b, ram0_ce_b, ram0_oe_b, ram0_we_b;
output [3:0] ram0_bwe_b;

inout [35:0] ram1_data;
output [18:0] ram1_address;
output ram1_adv_ld, ram1_clk, ram1_cen_b, ram1_ce_b, ram1_oe_b, ram1_we_b;
output [3:0] ram1_bwe_b;
input clock_feedback_in;
output clock_feedback_out;

inout [15:0] flash_data;
output [23:0] flash_address;
output flash_ce_b, flash_oe_b, flash_we_b, flash_reset_b, flash_byte_b;
input flash_sts;
output rs232_txd, rs232_rts;
input rs232_rxd, rs232_cts;
input mouse_clock, mouse_data, keyboard_clock, keyboard_data;
input clock_27mhz, clock1, clock2;
output disp_blank, disp_clock, disp_rs, disp_ce_b, disp_reset_b;
input disp_data_in;
output disp_data_out;
input button0, button1, button2, button3, button_enter, button_right,

button_left, button_down, button_up;
input [7:0] switch;
output [7:0] led;

inout [31:0] user1, user2, user3, user4;

inout [43:0] daughtercard;

inout [15:0] systemace_data;
output [6:0] systemace_address;
output systemace_ce_b, systemace_we_b, systemace_oe_b;
input systemace_irq, systemace_mpbrdy;

output [15:0] analyzer1_data, analyzer2_data, analyzer3_data,
analyzer4_data;

output analyzer1_clock, analyzer2_clock, analyzer3_clock, analyzer4_clock;

//
//
// I/O Assignments
//
//

// Audio Input and Output
assign beep= 1’b0;
//assign audio_reset_b = 1’b0;
//assign ac97_synch = 1’b0;
//assign ac97_sdata_out = 1’b0;
//ac97_sdata_in is an input

// Video Output
assign tv_out_ycrcb = 10’h0;
assign tv_out_reset_b = 1’b0;
assign tv_out_clock = 1’b0;
assign tv_out_i2c_clock = 1’b0;
assign tv_out_i2c_data = 1’b0;
assign tv_out_pal_ntsc = 1’b0;

59

assign tv_out_hsync_b = 1’b1;
assign tv_out_vsync_b = 1’b1;
assign tv_out_blank_b = 1’b1;
assign tv_out_subcar_reset = 1’b0;

// Video Input
//assign tv_in_i2c_clock = 1’b0;
assign tv_in_fifo_read = 1’b1;
assign tv_in_fifo_clock = 1’b0;
assign tv_in_iso = 1’b1;
//assign tv_in_reset_b = 1’b0;
assign tv_in_clock = clock_27mhz;//1’b0;
//assign tv_in_i2c_data = 1’bZ;
// tv_in_ycrcb, tv_in_data_valid, tv_in_line_clock1, tv_in_line_clock2,
// tv_in_aef, tv_in_hff, and tv_in_aff are inputs

// SRAMs

/* change lines below to enable ZBT RAM bank0 */
/*

assign ram0_data = 36’hZ;
assign ram0_address = 19’h0;
assign ram0_clk = 1’b0;
assign ram0_we_b = 1’b1;
assign ram0_cen_b = 1’b0; // clock enable

*/
/* enable RAM pins */

assign ram0_ce_b = 1’b0;
assign ram0_oe_b = 1’b0;
assign ram0_adv_ld = 1’b0;
assign ram0_bwe_b = 4’h0;

/**********/
assign ram1_data = 36’hZ;
assign ram1_address = 19’h0;
assign ram1_adv_ld = 1’b0;
assign ram1_clk = 1’b0;
assign ram1_cen_b = 1’b1;
assign ram1_ce_b = 1’b1;
assign ram1_oe_b = 1’b1;
assign ram1_we_b = 1’b1;
assign ram1_bwe_b = 4’hF;
assign clock_feedback_out = 1’b0;
// clock_feedback_in is an input

// Flash ROM
assign flash_data = 16’hZ;
assign flash_address = 24’h0;
assign flash_ce_b = 1’b1;
assign flash_oe_b = 1’b1;
assign flash_we_b = 1’b1;
assign flash_reset_b = 1’b0;
assign flash_byte_b = 1’b1;
// flash_sts is an input

// RS-232 Interface
assign rs232_txd = 1’b1;
assign rs232_rts = 1’b1;
// rs232_rxd and rs232_cts are inputs

// PS/2 Ports

60

// mouse_clock, mouse_data, keyboard_clock, and keyboard_data are inputs

// LED Displays
/*
assign disp_blank = 1’b1;
assign disp_clock = 1’b0;
assign disp_rs = 1’b0;
assign disp_ce_b = 1’b1;
assign disp_reset_b = 1’b0;
assign disp_data_out = 1’b0;

*/
// disp_data_in is an input

// Buttons, Switches, and Individual LEDs
//assign led = 8’hFF;
// button0, button1, button2, button3, button_enter, button_right,
// button_left, button_down, button_up, and switches are inputs

// User I/Os
assign user1 = 32’hZ;
assign user2 = 32’hZ;
assign user3 = 32’hZ;
assign user4 = 32’hZ;

// Daughtercard Connectors
assign daughtercard = 44’hZ;

// SystemACE Microprocessor Port
assign systemace_data = 16’hZ;
assign systemace_address = 7’h0;
assign systemace_ce_b = 1’b1;
assign systemace_we_b = 1’b1;
assign systemace_oe_b = 1’b1;
// systemace_irq and systemace_mpbrdy are inputs

// Logic Analyzer
assign analyzer1_data = 16’h0;
assign analyzer1_clock = 1’b1;
assign analyzer2_data = 16’h0;
assign analyzer2_clock = 1’b1;
assign analyzer3_data = 16’h0;
assign analyzer3_clock = 1’b1;
assign analyzer4_data = 16’h0;
assign analyzer4_clock = 1’b1;

// use FPGA’s digital clock manager to produce a
// 65MHz clock (actually 64.8MHz)
wire clock_65mhz_unbuf,clock_65mhz;
DCM vclk1(.CLKIN(clock_27mhz),.CLKFX(clock_65mhz_unbuf));

// synthesis attribute CLKFX_DIVIDE of vclk1 is 10
// synthesis attribute CLKFX_MULTIPLY of vclk1 is 24
// synthesis attribute CLK_FEEDBACK of vclk1 is NONE
// synthesis attribute CLKIN_PERIOD of vclk1 is 37
BUFG vclk2(.O(clock_65mhz),.I(clock_65mhz_unbuf));
wire clk = clock_65mhz;

// power-on reset generation
wire power_on_reset; // remain high for first 16 clocks
SRL16 reset_sr (.D(1’b0), .CLK(clk), .Q(power_on_reset),
.A0(1’b1), .A1(1’b1), .A2(1’b1), .A3(1’b1));
defparam reset_sr.INIT = 16’hFFFF;

// ENTER button is user reset
wire reset,user_reset;

61

debounce db1(power_on_reset, clock_65mhz, ~button_enter, user_reset);
assign reset = user_reset | power_on_reset;

/**
The following group of modules was modified
from an example in the 6.111 handouts from
Fall 2005. The example generates a black-and-
white camera image by storing the incoming
data stream in the ZBT memory and then
retrieving it for VGA display purposes. Our
modifications essentially change this code to
store a color image (24-bit/pixel) instead of
the 8-bit B&W image. This modification creates
a blockier image, but our project requires an
out-of-focus camera for optimum performance
so the grainy image is of little importance.
The modules are:
xvga
zbt_6111
vram_display *
adv7185init
ntsc_decode *
ntsc_to_zbt *
delayN
YCrCb2RGB
*: Modified from original source. All
modifications are noted in the module
code.
**/

// generate basic XVGA video signals
wire [10:0] hcount;
wire [9:0] vcount;
wire hsync,vsync,blank;
xvga xvga1(clock_65mhz,hcount,vcount,hsync,vsync,blank);

// wire up to ZBT ram
wire [35:0] vram_write_data;
wire [35:0] vram_read_data;
wire [18:0] vram_addr;
wire vram_we;
zbt_6111 zbt1(clock_65mhz, 1’b1, vram_we, vram_addr,
vram_write_data, vram_read_data,
ram0_clk, ram0_we_b, ram0_address, ram0_data, ram0_cen_b);

// generate pixel value from reading ZBT memory
wire [23:0] vr_pixel;
wire [18:0] vram_addr1;
vram_display vd1(reset,clock_65mhz,hcount,vcount,vr_pixel,

vram_addr1,vram_read_data);

// ADV7185 NTSC decoder interface code
// adv7185 initialization module
adv7185init adv7185(.reset(reset), .clock_27mhz(clock_27mhz),

.source(1’b0), .tv_in_reset_b(tv_in_reset_b),

.tv_in_i2c_clock(tv_in_i2c_clock),

.tv_in_i2c_data(tv_in_i2c_data));

wire [23:0] ycrcb; // video data (luminance, chrominance)
wire [2:0] fvh; // sync for field, vertical, horizontal
wire dv; // data valid
ntsc_decode decode (.clk(tv_in_line_clock1), .reset(reset),

.tv_in_ycrcb(tv_in_ycrcb[19:12]),

.ycrcb(ycrcb), .f(fvh[2]),

62

.v(fvh[1]), .h(fvh[0]), .data_valid(dv));

// code to write NTSC data to video memory
wire [18:0] write_addr;
wire [35:0] write_data;
wire ntsc_we;
ntsc_to_zbt n2z (clock_65mhz, tv_in_line_clock1, fvh, dv, ycrcb[23:0],
write_addr, write_data, ntsc_we);

// set up ZBT-writing connections
wire my_we = (hcount[1:0]==2’d2);
assign vram_addr = my_we ? write_addr : vram_addr1;
assign vram_we = my_we;
assign vram_write_data = write_data;

// latch output pixel data
reg [23:0] pixel_ycrcb;

always @(posedge clock_65mhz) pixel_ycrcb <= vr_pixel;

// YCrCb2RGB module provided by Xilinx
wire [23:0] pixel_rgb;
wire [23:0] pixel_rgb_filtered;
YCrCb2RGB colors (.R(pixel_rgb[23:16]), .G(pixel_rgb[15:8]),
.B(pixel_rgb[7:0]), .clk(clock_65mhz), .rst(reset),
.Y({pixel_ycrcb[23:16], 2’b00}), .Cr({pixel_ycrcb[15:8], 2’b00}),
.Cb({pixel_ycrcb[7:0], 2’b00}));

/***********************************
Now, for our original modules!

************************************/

// Debounced switch and button wires;
// see bottom of this file for implementation modules
wire switch0, switch1, switch2, switch3, switch4,
switch5, switch6, switch7;
wire buttonleft, buttonright, buttondown;

// Only strong red, green, or blue colors will pass through the filter.
// This is used to remove background noise and intensify bright spots
// (like LEDs).
rgbfilter colorfilter(.RGBin(pixel_rgb), .clk(clock_65mhz),
.filter(8’d252), .greenfilter(1’b1), .hcount(hcount),
.vcount(vcount), .RGBout(pixel_rgb_filtered));

// Generates the frame clock (on negative edge of vsync).
wire frameclk;
negedgedetector ed(vsync, clock_65mhz, reset, frameclk);

// Returns the approximate center of all green pixels.
// This module is influenced by noise such as overhead
// fluorescent lighting, but works fine in most cases.
wire [10:0] comX;
wire [9:0] comY;

centerofmass COM(.pixel(pixel_rgb_filtered[15:8]), .x(hcount),
.y(vcount), .clk(clock_65mhz), .frameclk(frameclk),
.reset(reset), .comX(comX), .comY(comY));

// Takes in the pixel center determined by the above
// module and calculates an approximate velocity
// through a two-bit output representing the four
// cardinal directions and four possible speeds.

63

// velocity = {speed, direction}
// speed: (00) zero (01) slow (10) medium (11) fast

// direction: (00) up (01) right (10) down (11) left
wire [3:0] velocity;
COMvelocity COMv(.x(comX), .y(comY), .clk(clock_65mhz),
.frameclk(frameclk), .reset(reset), .velocity(velocity));

// Debugging module for testing controller sensitivity.
// The user manipulates a white square on the screen,
// within the 2-D plane determined by the screen size.
wire[2:0] testpixel;
wire draw_reset;
block_test block (.vclock(clock_65mhz), .frameclk(frameclk),
.reset(draw_reset), .velocity(velocity), .hcount(hcount),
.vcount(vcount), .color({switch6, switch5, switch4}),

.mode(switch7),.comX(comX), .comY(comY), .pixel(testpixel));

// When the user switches operation modes, trigger a
// system-wide reset and hold the reset signal high for
// one frame using our "highforframe" module.
reg mode_change;
wire mode_reset;
reg [1:0] oldswitches;
always @ (posedge clock_65mhz) begin
if (reset)
mode_change <= 1’b0;
else if (oldswitches != {switch1, switch0})
mode_change <= 1’b1;
else mode_change <= 1’b0;
oldswitches <= {switch1, switch0};
end
highforframe modehold(reset, clock_65mhz, frameclk,
mode_change, mode_reset);

// **************
// Super Breakout
// **************

wire[23:0] gamepixel; // output pixel for VGA
wire game_start; // button 1
wire start = game_start // game starts if we’re in game mode
&& {switch1, switch0} == 2’b00;
wire gamereset = reset|mode_reset; // reset whenever operation mode changes
wire collision; // high for frame when ball hits a brick
wire [1:0] level // current game level (-1), 0-3

// Four possible game states:
// (00) - game hasn’t started yet

// (01) - game is running
// (10) - game over (lose)
// (11) - game complete (win)

wire [1:0] game_over;

// Hexadecimal game score, converted to base 10 in LEDdisplay
wire [31:0] game_score;

// Game difficulty, defined as 4 * switch[3:2]
wire [3:0] game_speed = {2’b00, switch3, switch2} << 2’b10;

// Number of extra balls, pre-formatted for LEDs.
// In other words, there’s only one ’1’ in this value,

64

// that lights up the LED of the # of extra balls left.
// So 6’b000100 --> 2 extra balls (’1’ at position 2).
// To increase/decrease the # of lives, we just shift the value.
wire [5:0] lives;

// Indicator variable that goes high when an intertitle
// is displaying in the game.
wire title_on;

// Demo cheat: allow user to skip levels by pressing Button Down
wire next_level;
negedgedetector forcer(buttondown, clock_65mhz, reset, next_level);

// Allow user to turn ball fading on and off by pressing Button 2.
// As soon as the user presses the button, the ball fade is activated,

// and the user can hold down the button as long as he/she wishes
// without effect.
reg fade = 1’b0;
wire fade_toggle;
negedgedetector fader(game_toggle, clock_65mhz, reset, fade_toggle);
always @ (posedge clock_65mhz)
fade <= (fade_toggle) ? ~fade : fade;

// Hold a collision pulse high for one frame so that the sound-effects
// module has time to notice it (sfx is running 27-MHz clock, collision
// is on 65-MHz).
wire collision_frame;
highforframe collisionhold(reset, clock_65mhz, frameclk,
collision, collision_frame);

// Latch the displayed score from the game, and allow it to reset.
reg [31:0] score;
always @ (posedge clock_65mhz) score <= (gamereset) ? 32’d0 : game_score;

// The main game module
superbreakout game(.vclock(clk), .reset(gamereset), .frameclk(frameclk),
.start(start), .pspeed(game_speed), .paddle_velocity(velocity),
.force_next_level(next_level), .inleft(~buttonleft), .inright(~buttonright),
.hcount(hcount), .vcount(vcount), .fade_on(fade), .collision(collision),
.pixel(gamepixel), .game_over(game_over), .score(game_score), .level(level),
.lives(lives), .title_on(title_on));

// Delay most signals by 3 cycles to sync with ZBT read
// and pipelined game output
wire b,hs,vs;

delayN dn1(clock_65mhz,hsync,hs);
delayN dn2(clock_65mhz,vsync,vs);
delayN dn3(clock_65mhz,blank,b);

// We need to delay the intertitle VGA signals by five clock cycles
// because pixel (0,0) isn’t ready until (4,0).
wire b_title, hs_title, vs_title;
delayN dn1b(clock_65mhz,hsync,hs_title);
defparam dn1b.NDELAY = 3’d5;
delayN dn2b(clock_65mhz,vsync,vs_title);
defparam dn2b.NDELAY = 3’d5;
delayN dn3b(clock_65mhz,blank,b_title);
defparam dn3b.NDELAY = 3’d5;

/* VGA Output. In order to meet the setup and hold times of the
AD7125, we send it ~clock_65mhz.

Four output modes, determined by debounced switch[1:0]:
00: Game Mode (Super Breakout)

65

01: Draw Mode (Drawing applet)
10: Camera Mode (What the camera sees)
11: Filter Mode (Filtered camera view)
The following RGB assignments are just a large mux that
passes the correct outputs to the VGA depending on
the operation mode set by switch[1:0]. */

assign vga_out_red = switch1 ?
(switch0 ? pixel_rgb_filtered[23:16] :
{8{testpixel[2]}} | pixel_rgb[23:16]) :
(switch0 ? {8{testpixel[2]}} : gamepixel[23:16]);
assign vga_out_green = switch1 ?
(switch0 ? pixel_rgb_filtered[15:8] :
{8{testpixel[1]}} | pixel_rgb[15:8]) :
(switch0 ? {8{testpixel[1]}} : gamepixel[15:8]);

assign vga_out_blue = switch1 ?
(switch0 ? pixel_rgb_filtered[7:0] :
{8{testpixel[0]}} | pixel_rgb[7:0]) :
(switch0 ? {8{testpixel[0]}} : gamepixel[7:0]);

assign vga_out_sync_b = 1’b1; // not used
assign vga_out_pixel_clock = ~clock_65mhz;

// This makes sure the correct delays are implemented at the
// correct time. The conditional statement is literally

// translated as "If the intertitle is showing on screen..."
assign vga_out_blank_b =
(title_on & {switch1,switch0} == 2’b00) ? ~b_title : ~b;

assign vga_out_hsync =
(title_on & {switch1,switch0} == 2’b00) ? hs_title : hs;

assign vga_out_vsync =
(title_on & {switch1,switch0} == 2’b00) ? vs_title : vs;

// LED menu display
// If we’re in "active game mode," - game is visible and running -
// show score by default, otherwise show character display.
// The user can force the alternate display by holding Button 0.
wire toggle_disp;
reg menu_display;
always @ (posedge clock_27mhz)
menu_display <= ({switch1, switch0} != 2’b00) ?
~toggle_disp : (game_over[1] ^ toggle_disp);
LEDdisplay myLEDs(gamereset, clock_27mhz, {switch1, switch0},
menu_display, game_over, score, disp_blank, disp_clock,
disp_rs, disp_ce_b, disp_reset_b, disp_data_out);

// User-defined sound effects setup
// The user can press Button Up to record a short
// sound clip, which is played back in full whenever
// the ball collides with a brick.
// This process uses most of Eddie’s code from Lab 4,
// but it’s modified to play everything when
// "playback" is pulsed high.
wire [7:0] from_ac97_data, to_ac97_data;

wire recording, ready;
reg playback;
always @ (posedge clock_27mhz) begin
if (reset) playback <= 1’b0;
else if (collision_frame) playback <= 1’b1;
else playback <= 1’b0;

66

end
recorder r(clock_27mhz, reset, playback, recording,
ready, from_ac97_data, to_ac97_data);

// AC97 driver
audio a(clock_27mhz, power_on_reset, 5’d16, from_ac97_data,

to_ac97_data, ready, audio_reset_b, ac97_sdata_out,
ac97_sdata_in, ac97_synch, ac97_bit_clock);

// Set up LED light output
assign led = ~{level, lives};

// Debounce all buttons and switches
debounce bup(reset, clock_27mhz, ~button_up, recording);
debounce bdown(reset, clock_65mhz, button_down, buttondown);
debounce bleft(reset, clock_65mhz, button_left, buttonleft);
debounce bright(reset, clock_65mhz, button_right, buttonright);
debounce b0(reset, clock_65mhz, ~button0, toggle_disp);
debounce b1(reset, clock_65mhz, ~button1, game_start);
debounce b2(reset, clock_65mhz, button2, game_toggle);
debounce b3(reset, clock_65mhz, ~button3, draw_reset);
debounce s0(reset, clock_65mhz, switch[0], switch0);
debounce s1(reset, clock_65mhz, switch[1], switch1);
debounce s2(reset, clock_65mhz, switch[2], switch2);
debounce s3(reset, clock_65mhz, switch[3], switch3);
debounce s4(reset, clock_65mhz, switch[4], switch4);
debounce s5(reset, clock_65mhz, switch[5], switch5);
debounce s6(reset, clock_65mhz, switch[6], switch6);
debounce s7(reset, clock_65mhz, switch[7], switch7);
endmodule

67

A.13 game over.v

// game_over.v
// 6.111 Fall 2006 Final Project
// Module created by Irene Fan

/*
This module raises the "done" signal when there are no more
breakable bricks left on the screen. It also outputs the number of
breakable bricks left on the screen (so in superbreakout.v, when
there are 3 or fewer bricks left on the screen, some random bombs
start to fall, and then when there is only 1 brick left we have an
"acid rain" of bombs).
Inputs:

vclock -- system clock
reset -- reset signal
init_num_bricks -- initial number of breakable bricks on screen
collision -- 1 when ball hits a brick
color -- color of the current brick

Outputs:
done -- 1 when no breakable bricks are left on the screen
num_bricks_left -- number of breakable bricks left on screen

*/

module game_over(vclock, reset, init_num_bricks, collision, color,
done, num_bricks_left);

input vclock;
input reset;
input [7:0] init_num_bricks;
input collision;
input [2:0] color;
output done;
output [7:0] num_bricks_left;

reg [7:0] num_bricks_left;
reg done;

always @ (posedge vclock) begin
// On a reset, start counting down from the initial number of
// bricks
if(reset) begin

num_bricks_left <= init_num_bricks;
done <= 1’b0;

end

// Raise "done" if there are no breakable bricks left
else if(num_bricks_left == 8’d0)

done <= 1’b1;

// Done should only pulse for one clock cycle.
// We also set num_bricks_left to an arbitrary non-zero value
// so that the game does not accidentally restart.
else if (done) begin

done <= 1’b0;
num_bricks_left <= 1;

end

// Every a red brick is hit, decrement the number of bricks left
// (red bricks are the only ones that break)
else if(collision)

num_bricks_left <= (color == 3’b100)? num_bricks_left - 1 : num_bricks_left;
else

num_bricks_left <= num_bricks_left;
end

68

endmodule

69

A.14 gen model.v

/**
**
** Module: ycrcb2rgb
** NOTE: EDDIE AND IRENE USED THIS, BUT DID NOT CHANGE IT FROM
** ITS ORIGINAL FORM!
**
** Generic Equations:
***/

module YCrCb2RGB (R, G, B, clk, rst, Y, Cr, Cb);

output [7:0] R, G, B;
input clk,rst;
input[9:0] Y, Cr, Cb;

wire [7:0] R,G,B;
reg [20:0] R_int,G_int,B_int,X_int,A_int,B1_int,B2_int,C_int;
reg [9:0] const1,const2,const3,const4,const5;
reg[9:0] Y_reg, Cr_reg, Cb_reg;

//registering constants
always @ (posedge clk)
begin
const1 = 10’b 0100101010; //1.164 = 01.00101010
const2 = 10’b 0110011000; //1.596 = 01.10011000
const3 = 10’b 0011010000; //0.813 = 00.11010000
const4 = 10’b 0001100100; //0.392 = 00.01100100
const5 = 10’b 1000000100; //2.017 = 10.00000100
end

always @ (posedge clk or posedge rst)
if (rst)

begin
Y_reg <= 0; Cr_reg <= 0; Cb_reg <= 0;
end

else
begin

Y_reg <= Y; Cr_reg <= Cr; Cb_reg <= Cb;
end

always @ (posedge clk or posedge rst)
if (rst)

begin
A_int <= 0; B1_int <= 0; B2_int <= 0; C_int <= 0; X_int <= 0;
end

else
begin
X_int <= (const1 * (Y_reg - ’d64)) ;
A_int <= (const2 * (Cr_reg - ’d512));
B1_int <= (const3 * (Cr_reg - ’d512));
B2_int <= (const4 * (Cb_reg - ’d512));
C_int <= (const5 * (Cb_reg - ’d512));
end

always @ (posedge clk or posedge rst)
if (rst)

begin
R_int <= 0; G_int <= 0; B_int <= 0;
end

else
begin
R_int <= X_int + A_int;
G_int <= X_int - B1_int - B2_int;
B_int <= X_int + C_int;
end

70

/* limit output to 0 - 4095, <0 equals o and >4095 equals 4095 */
assign R = ((R_int[20]) ? 0 : (R_int[19:18] == 2’b0) ? R_int[17:10] : 8’b11111111);
assign G = ((G_int[20]) ? 0 : (G_int[19:18] == 2’b0) ? G_int[17:10] : 8’b11111111);
assign B = ((B_int[20]) ? 0 : (B_int[19:18] == 2’b0) ? B_int[17:10] : 8’b11111111);
endmodule

71

A.15 hex2dec.v
// hex2dec.v: contains two modules - hex2dec and tencounter
// Created by Eddie Fagin
// 6.111 Final Project, Fall 2006
//
// This is my favorite unnecessary feature. These modules convert a 32-bit
// hexadecimal number to its base-10 representation, also stored as a 32-bit
// hex number. We use this to display the game score as an integer.
// The implementation is a little tricky, but uses basic concepts from
// elementary school.

// hex2dec module

/* hex2dec takes a 32-bit hex number and "converts"
it to a 32-bit base-10 number. For example, if the
hex input was 8’h0F, the output would be 8’h15.
(Of course, a 64-bit number would take a very long
time to convert if the high-order bits were non-zero.
With a 27-MHz clock, 64 bits maxed out would take
approximately 22,000 years, which seems slightly
impractical for game purposes. So we’re using only
the lower 32 bits of the LED display.) This module
links up eight four-bit conversion submodules,
much like a 32-bit adder connects multiple single-bit
sub-adders. Like a 32-bit adder, I’m sure there’s a
better way to implement this functionality, but at the
moment this isn’t a major component of our project so
I’m not going to lose sleep over it. :-)
Inputs

clk: 27-MHz system clock, which the display modules need.
reset: system reset
hex: up to 32 bits in hexadecimal form, score from game.

Ouputs
dec: up to 32 bits, score from game converted to base 10.

*/

module hex2dec(clk, reset, hex, dec);
input clk, reset;
input [31:0] hex;

output [31:0] dec;
reg [31:0] counter, oldHex;
wire cout0, cout1, cout2, cout3, cout4, cout5, cout6, cout7;
wire [3:0] out0, out1, out2, out3, out4, out5, out6, out7;

// Define a custom reset that takes into account the sequential
// nature of the counter. (i.e. It doesn’t reset if the new
// value is greater than the old one, because the counter
// automatically tries to get up to this new value from the old one. This
// drastically reduces the run-time.)
reg myReset;
always @ (posedge clk) myReset <= ((oldHex > hex) || reset);

// Think of this as clicker on a mechanical counter.
// When high, it forces the value stored by the counters
// to increase by one (each clock cycle).
reg enable;

// The chain of counters. Each counter represents a power of ten
// as a four-bit number, 0-9 (so ten6 represents the millions digit).
// The cout bits represent a digit’s overflow (9 -> 10), while the

72

// overflowing digit resets to zero. You probably did this in 2nd grade.
tencounter ten0 (clk, myReset, enable, cout0, out0);
tencounter ten1 (clk, myReset, cout0, cout1, out1);
tencounter ten2 (clk, myReset, cout1, cout2, out2);
tencounter ten3 (clk, myReset, cout2, cout3, out3);
tencounter ten4 (clk, myReset, cout3, cout4, out4);
tencounter ten5 (clk, myReset, cout4, cout5, out5);
tencounter ten6 (clk, myReset, cout5, cout6, out6);
tencounter ten7 (clk, myReset, cout6, cout7, out7);

// Paste each of the 4-bit digits together into a 32-bit number
assign dec = {out7, out6, out5, out4, out3, out2, out1, out0};

always @ (posedge clk) begin
if (myReset) begin

enable <= 1’b0; // We’re not clicking yet!
counter <= 32’d1; // This way, counter initially loops right to zero.
oldHex <= hex; // Remember the last input for efficiency purposes.

end
else begin

// If the counter hasn’t caught up to the input, keep clicking.
enable <= (counter < hex);
if (enable) begin

counter <= counter + 1’b1;
end

end
end

endmodule

// tencounter module

/* tencounter is my basic conversion tool for changing a hex
number into base 10. It works the same way you’d count a base-10
number -- every time you reach a multiple of ten, add one to the
next-highest digit. The next-highest digit should do the same.
Therefore, to get an N-digit base-10 number, you’d need N of
these modules, linked up linearly, and you should feed input
into the lowest digit’s cin.
Inputs

clk: 27-MHz system clock, which the display modules need.
reset: system reset
cin: the "enable" bit. Counter increments when this goes high.

Ouputs
cout: the carry-out bit, goes high when the counter reaches 10.
out: the four-bit "digit" (0-9) for this particular power of 10.

*/
module tencounter(clk, reset, cin, cout, out);

input clk, cin, reset;
output cout;
output [3:0] out;

reg [3:0] out;
reg cout;

always @ (posedge clk) begin
if (reset) begin
out <= 4’h0;
cout <= 1’b0;

end

// Every enable (cin), increment the internal counter (out)
// until it overruns (9 -> 10), then reset everything and
// briefly set cout high to add one to the power of ten

73

// immediately following the current digit.
else if (cin) begin

if (out == 4’h9) begin
cout <= 1’b1;
out <= 4’h0;

end
else begin

cout <= 1’b0;
out <= out + 1’b1;

end
end
else cout <= 1’b0;

end
endmodule

74

A.16 highforframe.v

// highforframe.v
// 6.111 Fall 2006 Final Project
// Module created by Eddie Fagin

/* This module holds an input high for one full frame-clock cycle,
from rising edge to rising edge. This is mostly used to simulate
the user holding down a button for an extended period of time.
Inputs

reset: system/user reset
clk: system clock, 65-MHz for our project
frameclk: goes high for one clock cycle after the negative

edge of each vsync
in: the signal pulse we’d like to hold

Outputs
out: in, held for one frame

*/

module highforframe(reset, clk, frameclk, in, out);
input reset, clk, frameclk, in;
output out;
reg hold_in, out;

always @ (posedge clk) begin
if (reset) begin

out <= 1’b0;
hold_in <= 1’b0;

end

// Latch the incoming signal
else if (in && ~hold_in && ~out) hold_in <= 1’b1;

// At the next frameclk after latching, set the output high
else if (frameclk && hold_in) begin

hold_in <= 1’b0;
out <= 1’b1;

end

// After one frame has elapsed, release the signal hold
else if (frameclk && out)

out <= 1’b0;
end

endmodule

75

A.17 intertitle.v
// intertitle.v
// 6.111 Fall 2006 Final Project
// Module created by Eddie Fagin

/* This module controls the various images shown
before, during, and after SuperBreakout.
There are six images, mostly created from
NES game screenshots (thanks, Nintendo):

1. Instructions: before the game starts
2. Mario Bros.: after completion of Level 1
3. Sonic: after completion of Level 2
4. Mega Man: after completion of Level 3
5. Prof. Terman: he scolds you if you lose the game
6. Final: when (more relevantly, if) you beat the game

These images are each represented as 256 x 192 pixel
screenshots in BRAM, and blown up so that each BRAM pixel
expands to a 4 x 4 pixel block on screen. 3-bit color.
The intertitles take five clock cycles to set up, so we
delayed these hsync, vsync and blank values by 5 to compensate.
Inputs

reset: game reset signal
vclock: 65-MHz clock
hcount, vcount: current xvga display location
game_level: current game level (for our project, ranges from 0-3)
game_over: two-bit game status representation

(00) - game hasn’t started yet
(01) - game’s running
(10) - game over (you lose)
(11) - game complete (you win)

Ouputs
title_pixel: the 3-bit pixel that should be output to VGA

if we’re in title-display mode
*/

module intertitle (reset, vclock, hcount, vcount,
game_level, game_over, title_pixel);

input reset, vclock;
input [10:0] hcount;
input [9:0] vcount;
input [1:0] game_over, game_level;

output [2:0] title_pixel;
reg [2:0] title_pixel;

wire has_game_started = (game_over != 2’b00);

// The BRAM connectors
reg win_enable, win;
wire [3:0] win_dout;
reg lose_enable, lose;
wire [3:0] lose_dout;
reg level1_enable, level;
wire [3:0] level1_dout;
reg level2_enable;
wire [3:0] level2_dout;
reg level3_enable;
wire [3:0] level3_dout;
reg intro_enable, intro;
wire [3:0] intro_dout;

// The various 256 x 192 read-only image BRAMs,

76

// with enable bits
youwin winram({vcount[9:2],hcount[9:2]},vclock,win_dout,win_enable);
youlose loseram({vcount[9:2],hcount[9:2]},vclock,lose_dout,lose_enable);
level1complete level1ram({vcount[9:2],hcount[9:2]},

vclock,level1_dout,level1_enable);
level2complete level2ram({vcount[9:2],hcount[9:2]},

vclock,level2_dout,level2_enable);
level3complete level3ram({vcount[9:2],hcount[9:2]},

vclock,level3_dout,level3_enable);
intro introram({vcount[9:2],hcount[9:2]},

vclock,intro_dout,intro_enable);

// The way this works is an indicator will go high when the
// respective title should be displayed (provided title display
// is globally active). Then, one clock cycle later, we start
// reading the BRAM (to give it time to set up). The appropriate BRAM
// gets enabled when hcount[1:0] == 1, and then read when
// hcount[1:0] == 3. This gives the BRAM enough time to fetch the data.
always @ (posedge vclock) begin

if (reset) begin // reset
title_pixel <= 3’b000;
intro_enable <= 1’b0;
win_enable <= 1’b0;
lose_enable <= 1’b0;
level1_enable <= 1’b0;
level2_enable <= 1’b0;
level3_enable <= 1’b0;
intro <= 1’b1;
win <= 1’b0;
lose <= 1’b0;
level <= 1’b0;

end

// If we’re at the end of the game
else if (win) begin

case(hcount[1:0])
2’b01: win_enable <= 1’b1;
2’b11: title_pixel <= {win_dout[0],win_dout[1],win_dout[2]};
default: win_enable <= 1’b0;

endcase
end

// Otherwise, if you’ve lost...
else if (lose) begin

case(hcount[1:0])
2’b01: lose_enable <= 1’b1;
2’b11: title_pixel <= {lose_dout[0],lose_dout[1],lose_dout[2]};
default: lose_enable <= 1’b0;

endcase
end

// You haven’t won or lost yet? Let’s make sure.
else if (game_over[1]) begin // game is over

if (game_over[0]) begin // win
win <= 1’b1;

end
else begin // lose

lose <= 1’b1;
end

end

// OK, so you’re still playing the game. What level are you on?
else if (level) begin

case (game_level)

77

2’b01:
case(hcount[1:0])

2’b01: level1_enable <= 1’b1;
2’b11: title_pixel <=

{level1_dout[0],level1_dout[1],level1_dout[2]};
default: level1_enable <= 1’b0;

endcase
2’b10:

case(hcount[1:0])
2’b01: level2_enable <= 1’b1;
2’b11: title_pixel <=

{level2_dout[0],level2_dout[1],level2_dout[2]};
default: level2_enable <= 1’b0;

endcase
2’b11:

case(hcount[1:0])
2’b01: level3_enable <= 1’b1;
2’b11: title_pixel <=

{level3_dout[0],level3_dout[1],level3_dout[2]};
default: level3_enable <= 1’b0;

endcase
default:

case(hcount[1:0])
2’b01: win_enable <= 1’b1;
2’b11: title_pixel <=

{win_dout[0],win_dout[1],win_dout[2]};
default: win_enable <= 1’b0;

endcase
endcase

end

// Have you even started playing yet?? Yeesh!
else if (has_game_started) begin // level complete

level <= 1’b1;
end

// I guess not. Let’s display the default introduction screen.
else if (intro) begin

case(hcount[1:0])
2’b01: intro_enable <= 1’b1;
2’b11: title_pixel <=

{intro_dout[0],intro_dout[1],intro_dout[2]};
default: intro_enable <= 1’b0;

endcase
end

end
endmodule

78

A.18 modblob.v
// modblob.v
// 6.111 Fall 2006 Final Project
// Module written by Irene Fan

/*
This module is modified off the blob.v sprite generator given to us
for Lab 5; modblob makes it easy to change the rectangle’s width,
height and color. This is used for the paddle which grows and
shrinks when hit by expanders and bombs, respectively.
Inputs:

display -- whether or not the sprite should be displayed on screen
x, y -- x-y coordinates for the top left corner of the sprite
hcount, vcount -- current pixel
width, height -- rectangle dimensions
color -- color of rectangle

Outputs:
pixel -- pixel output for the sprite at the current pixel

*/

module modblob(display,x,y,width,height,color,hcount,vcount,pixel);
input display; // whether or not the sprite should be shown
input [10:0] x; // x-y coordinates of sprite’s top left corner
input [9:0] y;
input [10:0] hcount; // x-y coordinates of displayed pixel
input [9:0] vcount;
input [8:0] width; // dimensions of sprite
input [4:0] height;
input [2:0] color; // color of sprite
output [2:0] pixel; // pixel output

reg [2:0] pixel;

always @ (x or y or hcount or vcount or width or height
or display or color) begin

// if hcount and vcount are currently in the rectangle,
// color that pixel; otherwise, display black

if ((hcount >= x && hcount < (x+width)) &&
(vcount >= y && vcount < (y+height)) && display)
pixel = color;

else
pixel = 3’b000;

end
endmodule

79

A.19 negedgedetector.v

// negedgedetector.v
// 6.111 Fall 2006 Final Project
// Module created by Eddie Fagin

// This is a simple module that just pulses "out" for one clock
// cycle at the falling edge of "in." I made a decent timing
// diagram in our report, if you’re interested.

module negedgedetector(in, clk, reset, out);
input in, clk, reset;
output out;
reg old, out;
always @ (posedge clk) begin
old <= reset ? 1’b0 : in;
out <= old & ~in;
end
endmodule

80

A.20 ntsc2zbt.v
//
// File: ntsc2zbt.v
// Date: 27-Nov-05
// Author: I. Chuang <ichuang@mit.edu>
//
// Example for MIT 6.111 labkit showing how to prepare NTSC data
// (from Javier’s decoder) to be loaded into the ZBT RAM for video
// display.
//
// Original: The ZBT memory is 36 bits wide; we only use 32 bits of this, to
// store 4 bytes of black-and-white intensity data from the NTSC
// video input.
//
// EDDIE’S CHANGE: We’re only using 24 bits now per line, to store
// one 24-bit YCrCb value from the NTSC video input. We also only store
// one quarter of the pixels, because we really don’t need quality.
///
// Prepare data and address values to fill ZBT memory with NTSC data

module ntsc_to_zbt(clk, vclk, fvh, dv, din, ntsc_addr, ntsc_data, ntsc_we);

input clk; // system clock
input vclk; // video clock from camera
input [2:0] fvh;
input dv;
input [23:0] din;
output [18:0] ntsc_addr;
output [35:0] ntsc_data;
output ntsc_we; // write enable for NTSC data
parameter COL_START = 10’d30;
parameter ROW_START = 10’d30;

// here put the data from the ntsc decoder into the ram
// this is for 1024 x 768 XGA display

reg [9:0] col = 0;
reg [9:0] row = 0;
reg [23:0] vdata = 0;
reg vwe;
reg old_dv;
reg old_frame; // frames are even / odd interlaced
reg even_odd; // decode interlaced frame to this wire

wire frame = fvh[2];
wire frame_edge = frame & ~old_frame;

always @ (posedge vclk) //LLC1 is reference
begin

old_dv <= dv;
vwe <= dv && !fvh[2] & ~old_dv; // if data valid, write it
old_frame <= frame;
even_odd = frame_edge ? ~even_odd : even_odd;

if (!fvh[2])
begin

col <= fvh[0] ? COL_START :
(!fvh[2] && !fvh[1] && dv && (col < 1024)) ? col + 1 : col;
row <= fvh[1] ? ROW_START :
(!fvh[2] && fvh[0] && (row < 768)) ? row + 1 : row;
vdata <= (dv && !fvh[2]) ? din : vdata;

end
end

81

// synchronize with system clock

reg [9:0] x[1:0],y[1:0];
reg [23:0] data[1:0];
reg we[1:0];
reg eo[1:0];

always @(posedge clk)
begin

{x[1],x[0]} <= {x[0],col};
{y[1],y[0]} <= {y[0],row};
{data[1],data[0]} <= {data[0],vdata};
{we[1],we[0]} <= {we[0],vwe};
{eo[1],eo[0]} <= {eo[0],even_odd};

end

// edge detection on write enable signal
reg old_we;
wire we_edge = we[1] & ~old_we;
always @(posedge clk) old_we <= we[1];

// shift each set of four bytes into a large register for the ZBT

reg [23:0] mydata; // Eddie: changed from [35:0]
always @(posedge clk)

if (we_edge)
//Eddie: remove [mydata <= { mydata[23:0], data[1] };]

mydata <= data[1];

// compute address to store data in

wire [18:0] myaddr = {1’b0, y[1][8:0], eo[1], x[1][9:2]};

// update the output address and data only when four bytes ready

reg [18:0] ntsc_addr;
reg [35:0] ntsc_data;
wire ntsc_we = (we_edge & (x[1][1:0]==2’b00));

always @(posedge clk)
if (ntsc_we)
begin

ntsc_addr <= myaddr;
ntsc_data <= {12’h000, mydata};

end
endmodule

82

A.21 recorder.v
///
// Eddie’s sound effects module
// Record/playback
// -skeleton provided by 6.111 staff for lab 4
// -modified for lab 4
// -modified again for final project
// -now, a quick playback pulse sets off a full uninterrupted playback.
//
///

module recorder(clock_27mhz, reset, playback, recording,
ready, from_ac97_data, to_ac97_data);

input clock_27mhz; // 27mhz system clock
input reset; // 1 to reset to initial state
input playback; // 1 to initiate full playback
input recording; // 1 to write new data to BRAM
input ready; // 1 when AC97 data is available
input [7:0] from_ac97_data; // 8-bit PCM data from mic

output [7:0] to_ac97_data; // 8-bit PCM data to headphone

reg [10:0] index; // 11-bit BRAM pointer
reg [10:0] max; // 11-bit pointer to end of recording
reg [2:0] i; // counter variable (0-7)
reg notactive; // indicator; allows module to detect a mode change
reg we; // write enable indicator for BRAM
reg playback_is_on; // indicator; on if playback is active
reg [7:0] to_ac97_data; // 8-bit PCM data to headphone

wire [7:0] dout; // 8-bit PCM data; post-processed version goes to headphone
wire [7:0] din; // 8-bit PCM data from microphone

// from_ac97_data gets directly stored into BRAM if we is active
assign din = from_ac97_data;

mem mymem (index, clock_27mhz, din, dout, we);

always @ (posedge clock_27mhz) begin
// on a reset, initialize all of the variables
// (except to_ac97_data, which gets initialized
// on the first assertion of ready)
if (reset) begin

max <= 11’b0;
index <= 11’b0;
we <= 1’b0;
i <= 3’d0;
notactive <= 1’b1;
playback_is_on <= 1’b0;

end

// whenever the ac97 is ready to go...
else if (ready && (playback | recording | playback_is_on)) begin

i <= (i == 4’h7) ? 3’b0 : i + 1’b1; // i <= (i+1) % 8
// sample data every 8 cycles
we <= (i == 4’h0 && index < 11’d2047 && recording);
to_ac97_data <= dout;

// recording mode
if (recording) begin

// if we just switched to recording mode, reset memory pointer
// and hang for one "ready" cycle as a safety precaution

83

playback_is_on <= 1’b0;

if (notactive) begin
notactive <= 1’b0;

index <= 13’b0;
end

// otherwise, every eight cycles,
// index <= (index + 1) % (size of memory - 1)
else if (i == 4’h0 & index < 11’d2047) index <= index + 1’b1;

end

else if (playback_is_on) begin
// if we just switched from recording mode, reset memory pointer
// and hang for one "ready" cycle as a safety precaution
if (notactive) begin

notactive <= 1’b0;
max <= index;
index <= 13’b0;

end

// otherwise, on the eighth cycle,
// index <= (index + 1) % (size of sound clip - 1)
else begin

if (i == 4’h0) begin
if (index == max) begin

playback_is_on <= 1’b0;
notactive <= 1’b1;

end
else index <= index + 1’b1;

end
end

end
// If user initiates playback, start up the playback mechanism
else if (playback) begin

playback_is_on <= 1’b1;
notactive <= 1’b1;

end
end

else if (ready) notactive <= 1’b1;
end

endmodule

84

A.22 rgbfilter.v

// rgbfilter.v
// 6.111 Fall 2006 Final Project
// Module created by Eddie Fagin

/* This module takes processes raw RGB data through
a multi-step filtering mechanism. All filtering was created
after lots of experimentation and guesswork. Since we’re
looking for high-intensity LEDs, I wanted this filter to
remove as much of the environment as possible, allowing
only bright lights (or reflections of those lights).
Inputs

RGBin: Current 24-bit RGB value.
(8-bit red, green, blue, in that order.)

clk: 65-MHz system clock
filter: 8-bit "high-pass filter"

(actually just a minimum brightness specification)
greenfilter: if on, removes all red and blue points.
hcount, vcount: the current pixel coordinates

Ouputs
RGBout: the 24-bit filtered output

*/

module rgbfilter(RGBin, clk, filter, greenfilter, hcount, vcount, RGBout);
input [23:0] RGBin;
input clk;
input [7:0] filter;
input greenfilter;
input [10:0] hcount;
input [9:0] vcount;
output [23:0] RGBout;

// Camera "frame" coordinates
parameter [10:0] max_x = 11’d745;
parameter [10:0] min_x = 11’d45;
parameter [9:0] max_y = 10’d564;
parameter [9:0] min_y = 10’d66;

reg [7:0] red0, green0, blue0;
reg [7:0] red1, green1, blue1;
reg [7:0] red2, green2, blue2;

// Stage 1: Remove anything not related to the camera input.
// (Outside the "box.")
always @ (posedge clk) begin

if (hcount >= min_x && hcount <= max_x &&
vcount >= min_y && vcount <= max_y)

begin
red0 <= RGBin[23:16];
green0 <= RGBin[15:8];
blue0 <= RGBin[7:0];

end
else {red0, green0, blue0} <= 24’h000000;

end

// Stage 2: Remove all weak red, green, and blue values.
always @ (posedge clk) begin
red1 <= (red0 < filter) ? 8’h00 : red0;
green1 <= (green0 < filter) ? 8’h00 : green0;
blue1 <= (blue0 < filter) ? 8’h00 : blue0;

end

85

// Stage 3: Three colors enter, one color leaves!
// Only let the strongest of the three primary colors through,
// if it exists (it doesn’t in white light).
always @ (posedge clk) begin

// Take out strong whites, if they exist
if (red1 >= filter && blue1 >= filter && green1 >= filter) begin

red2 <= 8’h00;
green2 <= 8’h00;
blue2 <= 8’h00;

end

// Only allow the strongest of the three colors
// (R, G, or B) to pass.
else begin

red2 <= (red1 > blue1 && red1 > green1) ? 8’hFF : 8’h00;
green2 <= (green1 > blue1 && green1 > red1) ? 8’hFF : 8’h00;
blue2 <= (blue1 > green1 && blue1 > red1) ? 8’hFF : 8’h00;

end
end

// Stage 4: Allow only the green values to pass if "greenfilter" is on.
// This is used as the output for "Filter Mode."
assign RGBout = greenfilter ? {8’h00, green2, 8’h00} : {red2, green2, blue2};

endmodule

86

A.23 score.v
// score.v
// 6.111 Fall 2006 Final Project
// Module created by Irene Fan

/*
This module calculates the score -- every time the ball hits a
non-magenta brick, the score increments by the current speed.
Inputs:

vclock -- system clock
reset -- reset signal
collision -- 1 when the ball hits a brick
pspeed -- ball speed
color -- color of the brick that was hit

Outputs:
score -- current game score

*/

module score(vclock, reset, collision, pspeed, color, score);
input vclock;
input reset;
input collision;
input [3:0] pspeed;
input [2:0] color;

output [31:0] score;

reg [31:0] score;

always @ (posedge vclock) begin
if(reset) // on reset, reset the score

score <= 32’d0;

// When the ball hits a non-magenta brick, increment the score
// by the current speed
else if(collision)

score <= (color == 3’b101)? score : score + pspeed;
else

score <= score;
end

endmodule

87

A.24 speed.v

// speed.v
// 6.111 Fall 2006 Final Project
// Module created by Eddie Fagin

/* This module changes the ball velocity (in the
horizontal direction) depending on the paddle’s
speed on ball-paddle impact. Basically, think of
the paddle as having some sort of frictional coefficient.
This module could be instantiated in order to vary the
vertical direction as well, but we chose not to implement
that feature.
Inputs

clk: 65-MHz system clock
ball_vel: if on, ball’s going right; otherwise, left
paddle_vel: the velocity input from the controller - {speed, direction}

speed: (00) zero (01) slow (10) medium (11) fast
direction: (00) up (01) right (10) down (11) left

oldspeed: the current ball’s x-speed
Ouputs

newspeed: the modified ball x-speed, in case the game wants to use it
*/

module speed(clk, ball_vel, paddle_vel, oldspeed, newspeed);
input clk, ball_vel;
input [3:0] paddle_vel;
input [3:0] oldspeed;

output [3:0] newspeed;
reg [3:0] newspeed;

// Hard-wire signals to velocity input for clarity
wire paddle_right = (paddle_vel[1:0] == 2’b01);
wire paddle_left = (paddle_vel[1:0] == 2’b11);
wire [1:0] paddle_speed = paddle_vel[3:2];

always @ (posedge clk) begin
// If the paddle’s not going left or right,
// don’t change anything.
if (!paddle_right && !paddle_left)
newspeed <= oldspeed;
else

// If the ball and paddle are going the same direction,
// increase the speed.
if ((ball_vel && paddle_right) || (~ball_vel && paddle_left))

newspeed <= (oldspeed + paddle_speed <= 4’hf) ?
oldspeed + paddle_speed : oldspeed;

// If they’re going in opposite directions, friction should
// slow the ball down.
else newspeed <= (oldspeed > paddle_speed) ?

oldspeed - paddle_speed : oldspeed;
end

endmodule

88

A.25 superbreakout.v

// superbreakout.v
// 6.111 Fall 2006 Final Project
// Module created by Irene Fan

/*
This game is our version of Atari’s "Super Breakout" (1978). In
Super Breakout, there are rows of bricks lining the top of the
screen and a ball that bounces off the side and top walls, breaking
bricks whenever it ricochets against them. A paddle is located at
the bottom of the screen, and it can be moved left and right to
deflect the ball; if the paddle misses the ball and the ball
touches the bottom of the screen, the game is over. The users
main motive is to break all the bricks on the screen, and the
bricks will be a variety of colors to indicate how many times they
must be hit before they break and disappear from the screen. Our
version includes levels, multiple lives, and game-affecting items
dropping from various bricks as they are hit.
superbreakout.v is the main game module, a big linear FSM that
updates the state of the game at the end of each frame. First,
given the current ball position and x-y velocities, we figure out
where the ball would want to move next if no bricks were in its
way. We check this anticipated move to see if there will be a
collision -- in the event of one, we break the appropriate brick
and change the ball’s velocity, simulating a perfect reflection off
the brick. We also update the position of the paddle and the state
of any other objects on screen before the beginning of the next
frame.

- Bricks are generated from a .coe file -- each level is an
array of 1x192 (one address per each of the 8*24 = 192 blocks
filling the screen). Each memory cell holds 4 bits of
information about whether that block holds a brick (1 bit) and
what that brick’s current color is (3 bits).

- Bricks’ colors reflect the number of remaining hits they need
before they break: Red = 1 hit; Yellow = 2 hits, Green = 3
hits, Teal = 4 hits, Blue = 5 hits (Magenta bricks never break)

- Red bricks drop a bomb when they break; the bomb shrinks the
paddle if it hits it

- Green bricks drop expanders, which lengthen the paddle
- Blue bricks drop life capsules, which grant an extra ball
- When there are less than 4 bricks on the screen, bombs drop

randomly every 128 frames; when there is only 1 brick left,
bombs drop every 32 frames

Modules instantiated in superbreakout.v:
- circle -- for the ball, bombs, lifecapsule
- modblob -- for the paddle
- drop_game_object -- drops bombs/expanders/lifecapsules and

updates their position every frame
- expander_blob -- for the expander
- block_detector -- given hcount, vcount coordinates for a pixel,

returns what block the pixel is in; used for displaying
bricks, finding the block of the current ball coordinates, and
finding the block of the anticipated ball coordinates

- det_brick_din -- determines the next color of the brick that was hit
- brick3rdual, brick3rdualro -- BRAMs with information about the

bricks; the first is a read/write memory used when displaying
the bricks and edited upon collisions, and the second is a
read-only memory that holds the original brick information to
be used when regenerating levels

89

- display -- display the bricks, ball, paddle, and objects on the screen
- detect_bombs -- detect when objects hit the paddle
- speed -- changes the speed of the ball depending on how it hits

the paddle
- score -- keeps track of current score
- negedgedetector -- indicates when brick reset phase is over
- game_over -- keeps track of when the level is complete and how

many breakable bricks are left
- intertitle -- generates intertitle pixels
Inputs:

vclock -- system clock (65 Mhz)
reset -- reset signal (1 to initialize output)
frameclk -- triggers on negedge of vsync (at the end of every

frame)
start -- game start command
pspeed -- initial x-speed and y-speed (in our game, x-speed

changes when you are playing with the controller but y-speed
never changes)

paddle_velocity -- how many pixels the paddle can move per frame
force_next_level -- when 1, game skips to next level (_not_ for

regular playing mode)
inleft, inright -- left and right button inputs that override

the controller
hcount -- horizontal index of current pixel (0..1023)
vcount -- vertical index of current pixel (0..767)
fade_on -- 1 to enable the ball fading feature

Outputs:
collision -- 1 when ball collides with a brick
pixel -- 24-bit pixel output
game_over -- two-bit value indicating current game status --

(00) - game hasn’t started yet
(01) - game is running
(10) - game over (lose)
(11) - game complete (win)

score -- score of the current game in hex, up to 32 bits
level -- one of 4 possible levels
lives -- number of lives left (max 6 lives total)
title_on -- 1 if an intertitle should be displayed

*/

module superbreakout (vclock, reset, frameclk, start, pspeed,
paddle_velocity, force_next_level, inleft,
inright, hcount, vcount, fade_on, collision,
pixel, game_over, score, level, lives, title_on);

input vclock;
input reset;
input frameclk;
input start;
input [3:0] pspeed;
input [3:0] paddle_velocity;
input force_next_level;
input inleft;
input inright;
input [10:0] hcount;
input [9:0] vcount;
input fade_on;
output collision;
output [23:0] pixel;
output [1:0] game_over;

90

output [31:0] score;
output [1:0] level;
output [5:0] lives;
output title_on;

// Parameters
parameter screen_width = 11’d1024; // screen is 1024 by 768 pixels
parameter screen_height = 10’d768;
parameter ball_radius = 4’d4; // ball radius is 4 pixels
parameter init_paddle_width = 9’d256; // paddle starts at 256 pixels
parameter paddle_height = 5’d16; // paddle height is 16 pixels
parameter brick_width = 8’d128; // bricks are 128 by 32 pixels
parameter brick_height = 6’d32;
parameter init_copy_size = 10’d192; // number of blocks per level

// (there are 8 by 24
// blocks/screen)

parameter paddle_shrink_amount = 6’d32; // how much the paddle shrinks
// when a bomb hits it

parameter paddle_grow_amount = 6’d32; // how much the paddle grows
// when an expander hits it

parameter paddle_slow = 5’d5; // paddle speeds
parameter paddle_normal = 5’d15;
parameter paddle_fast = 5’d30;

// ball_x and ball_y are the coordinates for the center of the circle
reg [10:0] ball_x;
reg [9:0] ball_y;

// check_x and check_y are the coordinates of the next anticipated move
reg [10:0] check_x;
reg [9:0] check_y;

// paddle_x is the x-coordinate of the top left corner of the paddle
reg [10:0] paddle_x;

reg [4:0] paddle_speed; // speed of the paddle
reg [8:0] paddle_width; // width of the paddle

// Ball starts off traveling toward the top right of the screen
reg ball_xvel, ball_yvel;

// How many horizontal and vertical pixels the ball travels per frame
reg [3:0] xspeed, yspeed;
// modified ball speed assuming it hits the paddle
wire [3:0] newXspeed;

// Pixel outputs for circle and paddle;
// they are combined with the brick pixel output
// to produce pixel[23:0] which is outputted to vga
wire [2:0] paddle_pixel, circle_pixel;
reg title_on;
wire [2:0] title_pixel;

// From the block detectors (x and y coordinates of the blocks the
// ball is currently in and wants to move to)
wire [2:0] ball_gridx, check_gridx;
wire [4:0] ball_gridy, check_gridy;

// Registers for the memories
wire [9:0] display_address;
reg [9:0] addr_offset;
reg [9:0] check_address;

91

reg [3:0] change_brick_din;
wire [3:0] display_data_out, brick_dout;
reg change_brick_we;
wire [2:0] display_grid_x;
wire [4:0] display_grid_y;
reg [9:0] copy_address;
wire [3:0] regen_data_out;

// Check memory, see if there is a brick where the ball wants to move
// Save brick_dout to these registers
reg [3:0] check_brick_dout, vert_brick_dout, horiz_brick_dout;

// Initial number of breakable bricks in the level
reg [7:0] init_num_bricks;
// Number of breakable bricks left on screen
wire [7:0] num_bricks_left;
// Used in brick reset
reg write_cycle;
reg brick_reset;

// For det_brick_din (stands for determine brick data_in)
wire [3:0] next_brick_color;
reg [2:0] color; // current block color

// For drop_game_object

// Pulses high when dropped objects update position
reg update_clock;

// Pulses high when the object should be dropped
reg drop_bomb, drop_expander, drop_lifecapsule;

// x, y coordinates of the block from which object is dropped
reg [2:0] drop_gridx;
reg [4:0] drop_gridy;

// Toggles whether each of these objects is displayed
wire bomb1_display, bomb2_display, bomb3_display, bomb4_display,

bomb5_display, expander_display, extralife_display;
// x-coordinates of the objects

wire [10:0] bomb1_x, bomb2_x, bomb3_x, bomb4_x, bomb5_x,
expander_x, extralife_x;

// y-coordinates of the objects
wire [9:0] bomb1_y, bomb2_y, bomb3_y, bomb4_y, bomb5_y, expander_y,

extralife_y;
// Pixel outputs for the objects

wire [2:0] bomb1_pixel, bomb2_pixel, bomb3_pixel, bomb4_pixel,
bomb5_pixel, expander_pixel, extralife_pixel;

// Goes high when the object pixels overlap paddle pixels
wire bomb1_hit_paddle, bomb2_hit_paddle, bomb3_hit_paddle,

bomb4_hit_paddle, bomb5_hit_paddle, expander_hit_paddle,
extralife_hit_paddle;

// 1 if object hit the paddle in the past frame
reg shorten_paddle, shorten_paddle_b1, shorten_paddle_b2,

shorten_paddle_b3, shorten_paddle_b4, shorten_paddle_b5,
lengthen_paddle, life_up;

reg [3:0] counter; // for the linear fsm
// Bombs drop every 32 frames when there is 1 bricks left
reg [4:0] last_brick_counter;
// Bombs drop every 128 frames when there are < 4 bricks left
reg [6:0] frame_counter;
// Determines from which grid the "random" bombs should fall
reg [2:0] bomb_gridx;

92

reg collision; // 1 when ball collides w/ brick
reg had_collision; // collision marker

// Is the game halted?
reg stop; // game over
reg has_game_started;
reg done; // victory
reg[1:0] level; // 4 levels total
parameter MAX_LEVEL = 3;
assign game_over = has_game_started ?

(done ? 2’b11 : stop ? 2’b10 : 2’b01) : 2’b00;
// game_over shows current game status
// (00) - game hasn’t started yet
// (01) - game is running
// (10) - game over (lose)
// (11) - game complete (win)

reg brick_reset_start;
wire game_ready;
wire level_complete;
reg loselife;
reg [5:0] lives;

// Determine user input
wire left = (paddle_velocity[1:0] == 2’b11) | inleft;
wire right = (paddle_velocity[1:0] == 2’b01) | inright;

// Instantiate a circle for the ball -- always displayed on screen
// Using the center coordinates of the ball here, but display
// it using the top left corner’s coordinates in circle.v
circle ball1(.display(1’b1), .vclock(vclock), .reset(reset),

.frameclk(frameclk), .x(ball_x - ball_radius),

.y(ball_y - ball_radius), .hcount(hcount),

.vcount(vcount), .pixel(circle_pixel));

// Paddle -- always displayed, always at bottom of screen
modblob my_paddle(.display(1’b1), .x(paddle_x), .y(10’d752),

.width(paddle_width), .height(paddle_height),

.color(3’b010), .hcount(hcount), .vcount(vcount),

.pixel(paddle_pixel));

// Drops bombs/expanders/lifecapsules and updates their position if
// they are displayed
drop_game_object bomb_manager(.vclock(vclock), .reset(reset),

.update_clock(update_clock),

.has_game_started(has_game_started),

.level_complete(level_complete),
force_next_level(force_next_level), .loselife(loselife),
.drop_bomb(drop_bomb), .drop_expander(drop_expander),
.drop_lifecapsule(drop_lifecapsule), .drop_gridx(drop_gridx),
.drop_gridy(drop_gridy),
.shorten_paddle_b1(shorten_paddle_b1),
.shorten_paddle_b2(shorten_paddle_b2),
.shorten_paddle_b3(shorten_paddle_b3),
.shorten_paddle_b4(shorten_paddle_b4),
.shorten_paddle_b5(shorten_paddle_b5),
.lengthen_paddle(lengthen_paddle), .life_up(life_up),
.bomb1_display(bomb1_display), .bomb2_display(bomb2_display),
.bomb3_display(bomb3_display), .bomb4_display(bomb4_display),

93

.bomb5_display(bomb5_display),

.expander_display(expander_display),

.extralife_display(extralife_display), .bomb1_x(bomb1_x),

.bomb2_x(bomb2_x), .bomb3_x(bomb3_x), .bomb4_x(bomb4_x),

.bomb5_x(bomb5_x), .expander_x(expander_x),

.extralife_x(extralife_x), .bomb1_y(bomb1_y),

.bomb2_y(bomb2_y), .bomb3_y(bomb3_y), .bomb4_y(bomb4_y),

.bomb5_y(bomb5_y), .expander_y(expander_y),

.extralife_y(extralife_y));

// Instantiate bombs (red)
// These shorten the paddle
circle bomb1(bomb1_display, vclock, reset, frameclk, bomb1_x,

bomb1_y, hcount, vcount, bomb1_pixel);
defparam bomb1.COLOR = 3’b100;

circle bomb2(bomb2_display, vclock, reset, frameclk, bomb2_x,
bomb2_y, hcount, vcount, bomb2_pixel);

defparam bomb2.COLOR = 3’b100;
circle bomb3(bomb3_display, vclock, reset, frameclk, bomb3_x,

bomb3_y, hcount, vcount, bomb3_pixel);
defparam bomb3.COLOR = 3’b100;

circle bomb4(bomb4_display, vclock, reset, frameclk, bomb4_x,
bomb4_y, hcount, vcount, bomb4_pixel);

defparam bomb4.COLOR = 3’b100;
circle bomb5(bomb5_display, vclock, reset, frameclk, bomb5_x,

bomb5_y, hcount, vcount, bomb5_pixel);
defparam bomb5.COLOR = 3’b100;

// Instantiate expander -- this one is a double arrow (<---->)
// These lengthen the paddle
expander_blob expander(expander_display, vclock,reset, frameclk,

expander_x, expander_y, hcount, vcount,
expander_pixel);

defparam expander.COLOR = 3’b010;

// Instantiate life capsule
// This gives the player and extra life when it hits the paddle
circle extralife(extralife_display, vclock,reset,

frameclk,extralife_x, extralife_y, hcount, vcount,
extralife_pixel);

defparam extralife.COLOR = 3’b001;

// Function takes hcount, vcount and outputs the block they’re in
block_detector display_detector(hcount, vcount, display_grid_x,

display_grid_y);

// What the next color the brick that was hit should be
det_brick_din nextcolor(vclock, color, next_brick_color);

// Data for each block is 4 bits:
// 1 bit for display (is brick there), 3 for color

// This is the memory for displaying & checking for bricks
// All the levels are in the same .coe file -- addr_offset lets
// you cycle through the levels in the bram.
brick3rdual brickmemory(.addra(display_address + addr_offset),

.addrb(check_address + addr_offset),

.clka(vclock), .clkb(vclock),

.dinb(change_brick_din),

.douta(display_data_out),

.doutb(brick_dout), .web(change_brick_we));

94

// Read-only memory for regenerating bricks
brick3rdualro brickmemory_ro(.addr(copy_address + addr_offset),

.clk(vclock), .dout(regen_data_out));

// Display the bricks, ball, paddle, and objects on screen
module display(.vclock(vclock), .reset(game_ready),

.frameclk(frameclk), .hcount(hcount),

.vcount(vcount), .grid_x(display_grid_x),

.grid_y(display_grid_y),

.brick_data_out(display_data_out),

.paddle_pixel(paddle_pixel),

.ball_pixel(circle_pixel),

.title_pixel(title_pixel),

.bomb1_pixel(bomb1_pixel),

.bomb2_pixel(bomb2_pixel),

.bomb3_pixel(bomb3_pixel),

.bomb4_pixel(bomb4_pixel),

.bomb5_pixel(bomb5_pixel),

.expander_pixel(expander_pixel),

.extralife_pixel(extralife_pixel),

.fade_on(fade_on), .title_on(title_on),

.brick_address(display_address), .pixel(pixel));

// Find the block the current coordinates of the ball is in
block_detector orig_pos_detector(ball_x, ball_y, ball_gridx,

ball_gridy);

// Find the block the coordinates of the ball’s anticipated move is
// in
block_detector new_pos_detector(check_x, check_y, check_gridx,

check_gridy);

// Detect when objects hit the paddle
detect_bombs detector1(bomb1_pixel, paddle_pixel, bomb1_hit_paddle);
detect_bombs detector2(bomb2_pixel, paddle_pixel, bomb2_hit_paddle);
detect_bombs detector3(bomb3_pixel, paddle_pixel, bomb3_hit_paddle);
detect_bombs detector4(bomb4_pixel, paddle_pixel, bomb4_hit_paddle);
detect_bombs detector5(bomb5_pixel, paddle_pixel, bomb5_hit_paddle);
detect_bombs detector6(expander_pixel, paddle_pixel, expander_hit_paddle);
detect_bombs detector7(extralife_pixel, paddle_pixel, extralife_hit_paddle);

// Speed of the ball can change depending on how it hits the paddle
speed bouncer(.clk(vclock), .ball_vel(ball_xvel),

.paddle_vel(paddle_velocity),.oldspeed(xspeed),

.newspeed(newXspeed));

// Keeps track of current game score
score scorebox(.vclock(vclock), .reset(reset),

.collision(collision), .pspeed(pspeed),

.color(check_brick_dout[2:0]), .score(score));

// Indicates when brick reset phase is over
negedgedetector brickreset(brick_reset, vclock, reset, game_ready);

// Keeps track of when the level is complete and how many breakable
// bricks are left
game_over brick_watchdog(.vclock(vclock), .reset(game_ready),

.init_num_bricks(init_num_bricks),

.collision(collision), .color(color),

.done(level_complete),

.num_bricks_left(num_bricks_left));

95

// Generates intertitle pixels
intertitle titles(reset, vclock, hcount, vcount, level, game_over,

title_pixel);

/*************** SUPERBREAKOUT STARTS HERE!!!
always @ (posedge vclock) begin

// On a reset or new level, initialize variables
if(reset | (has_game_started & level_complete) |

force_next_level) begin
ball_x <= screen_width >> 1;
ball_y <= screen_height - paddle_height - ball_radius;
ball_xvel <= 1’b1;
ball_yvel <= 1’b0;
paddle_x <= (screen_width - init_paddle_width) >> 1’b1;
stop <= 1’b0;
counter <= 4’d0;
collision <= 1’b0;
brick_reset <= 1’b1;
brick_reset_start <= 1’b1;
copy_address <= 10’d0;
check_address <= 10’d0;
write_cycle <= 1’b1;
init_num_bricks <= 8’d0;
paddle_speed <= 5’d0;
xspeed <= 4’h0;
yspeed <= 4’h0;
title_on <= 1’b1;
loselife <= 1’b0;
bomb_gridx <= 3’b000;
paddle_width <= init_paddle_width;
shorten_paddle <= 1’b0;
last_brick_counter <= 5’d0;
drop_bomb <= 1’b0;
drop_expander <= 1’b0;
drop_lifecapsule <= 1’b0;
update_clock <= 1’b0;
had_collision <= 1’b0;

// Reset-specific initialization
if (reset) begin

level <= 2’d0;
addr_offset <= 10’d0;
done <= 1’b0;
has_game_started <= 1’b0;
lives <= 6’b010000; //start with five lives

end

// If the last level played was the final level, then stop the game
// Otherwise, the user forced a level change, so loop back to
// the first level
else if (level == MAX_LEVEL) begin

level <= (force_next_level) ? 2’b00 : level;
addr_offset <= (force_next_level) ? 10’d0 : addr_offset;
done <= has_game_started ? 1’b1 : 1’b0;
has_game_started <= ~force_next_level;

end

// If the last level played was NOT the final level, then advance
// to the next level unconditionally
else begin

level <= level + 1’b1;
addr_offset <= addr_offset + init_copy_size;
done <= 1’b0;

96

has_game_started <= 1’b0;
end

end

// If the level hasn’t started yet and the user presses
// the start button, begin game
else if (~has_game_started & start) begin

xspeed <= pspeed;
yspeed <= pspeed;
has_game_started <= 1’b1;
title_on <= 1’b0;

end

// If the player just died, reset the level
// If this was the player’s last life, then end the game
else if (loselife) begin

if (lives == 6’d1) begin // if this is your last life...
lives <= 6’d0;
stop <= 1’b1; // game over = true

end
else begin

ball_x <= screen_width >> 1’b1;
ball_y <= screen_height - paddle_height - ball_radius;
check_x <= screen_width >> 1’b1;
check_y <= screen_height - paddle_height - ball_radius;
ball_xvel <= 1’b1;
ball_yvel <= 1’b0;
paddle_x <= (screen_width - init_paddle_width) >> 1’b1;
lives <= lives >> 1’b1;
loselife <= 1’b0;
has_game_started <= 1’b0;
paddle_width <= init_paddle_width;
shorten_paddle <= 1’b0;
last_brick_counter <= 5’d0;
drop_bomb <= 1’b0;
drop_expander <= 1’b0;
drop_lifecapsule <= 1’b0;

end
end

// Game over...
else if (stop) begin

title_on <= 1’b1; // turn the "game over" intertitle on
has_game_started <= 1’b1; // keep game running so that it doesn’t

// accidentally reset
end

// Brick-reset phase
// Regenerate all bricks on screen, or a new set of bricks for a
// new level
else if(brick_reset) begin

// One latency cycle to give the BRAM some time
if (brick_reset_start) brick_reset_start <= 0;

// If we’re at the end of the reset cycle, then exit this loop
else if(check_address == init_copy_size - 1’b1) begin

brick_reset <= 1’b0;
change_brick_we <= 1’b0;
change_brick_din <= 4’b1111;

end
else begin

// Write cycle: turn on the write-enable so that the read-only
// memory contents can be copied over to the dynamic BRAM

97

if(write_cycle) begin
change_brick_din <= regen_data_out;
init_num_bricks <= (~regen_data_out[3] ||

(regen_data_out[2:0] == 3’b101) ||
(regen_data_out[2:0] == 3’b000))?
init_num_bricks : init_num_bricks + 1’b1;

copy_address <= copy_address + 1’b1;
change_brick_we <= 1’b1;
write_cycle <= 1’b0;

end

// Read cycle: get next regen_data_out from the read-only
// memory to copy over to the BRAM in the next write cycle
else begin

check_address <= check_address + 1’b1;
write_cycle <= 1’b1;

end
end

end

// THE CORE OF NORMAL SUPERBREAKOUT MODE
else if(has_game_started && ~stop && ~done) begin

// Keeps track of whether or not objects have hit the paddle
// in the last frame
shorten_paddle <= shorten_paddle || bomb1_hit_paddle ||

bomb2_hit_paddle || bomb3_hit_paddle ||
bomb4_hit_paddle || bomb5_hit_paddle;

shorten_paddle_b1 <= shorten_paddle_b1 || bomb1_hit_paddle;
shorten_paddle_b2 <= shorten_paddle_b2 || bomb2_hit_paddle;
shorten_paddle_b3 <= shorten_paddle_b3 || bomb3_hit_paddle;
shorten_paddle_b4 <= shorten_paddle_b4 || bomb4_hit_paddle;
shorten_paddle_b5 <= shorten_paddle_b5 || bomb5_hit_paddle;
lengthen_paddle <= lengthen_paddle || expander_hit_paddle;
life_up <= life_up || extralife_hit_paddle;

// At the end of every frame, move the ball and update the
// position of everything

if(frameclk) begin
// Update counter for our massive FSM
counter <= counter + 1’b1;
// These 2 counters are for end-game bomb-dropping
last_brick_counter <= last_brick_counter + 1’b1;
frame_counter <= frame_counter + 1’b1;

// STEP 1: See where would the ball move in the next frame
// if there were no bricks
// note: working with coordinates of the ball’s center

// Ball changing x-direction
if(ball_xvel) begin // moving right

// if the ball is touching the right wall, bounce
// toward the left
if((ball_x + ball_radius) == screen_width) begin

check_x <= ball_x - xspeed;
ball_xvel <= 1’b0;

end
// keep the ball from going through the wall
else if((ball_x + ball_radius + xspeed) > screen_width)

check_x <= screen_width - ball_radius;
// otherwise move right
else

check_x <= ball_x + xspeed;

98

end
else begin // moving left

// if the ball is touching the left wall, bounce
// toward the right
if(ball_x == ball_radius) begin

check_x <= ball_x + xspeed;
ball_xvel <= 1’b1;

end
// keep ball from going through the wall
else if(ball_x < (xspeed + ball_radius))

check_x <= ball_radius;
// otherwise move left normally
else

check_x <= ball_x - xspeed;
end

// moving vertically
if(ball_yvel) begin // moving down

// if the ball touches the bottom of the screen, you
// lose a life
if((ball_y + ball_radius) == screen_height)

loselife <= 1’b1;
// check to see if the ball hits the paddle
else if((ball_y + ball_radius + yspeed)

>= (screen_height - paddle_height)) begin
// outside of the bounds of the paddle
if(((ball_x + ball_radius) < paddle_x)

|| (ball_x > (paddle_x + paddle_width)))
check_y <= ((ball_y + ball_radius + yspeed) >= screen_height)?

screen_height - ball_radius : ball_y + yspeed;
else begin

// ball already missed paddle earlier
if((ball_y + ball_radius) >= (screen_height - paddle_height))

check_y <= screen_height - ball_radius;
// ball hits paddle!!
else begin

xspeed <= newXspeed;
check_y <= screen_height - paddle_height - ball_radius;
ball_yvel <= 1’b0;

end
end

end
// otherwise move down the screen normally
else

check_y <= ball_y + yspeed;
end
else begin // moving up

// hit the top of the screen, bounce down
if(ball_y == ball_radius) begin

check_y <= ball_y + yspeed;
ball_yvel <= 1’b1;

end
// ball can’t go through top of screen
else if(ball_y < (yspeed + ball_radius))

check_y <= ball_radius;
// otherwise, ball moves upwards normally
else

check_y <= ball_y - yspeed;
end

end

// STEP 2: 1 clock cycle later, take the grid coordinates of
// the anticipated move and use those to set the address so the

99

// corresponding block can be checked in memory
else if(counter == 4’d1) begin

counter <= counter + 1’b1;
change_brick_we <= 1’b0;

// set this address to get information about the block
// enclosing the new coordinates
check_address <= (check_gridy << 3) + check_gridx;

// paddle speed doesn’t change if you’re playing the game
// with the FPGA buttons
if (inleft | inright) paddle_speed <= paddle_normal;
else

case (paddle_velocity[3:2])
2’b00: paddle_speed <= 5’d0;
2’b01: paddle_speed <= paddle_slow;
2’b10: paddle_speed <= paddle_normal;
2’b11: paddle_speed <= paddle_fast;

endcase
end

// Extra clock cycle to account for read and write to BRAM
else if (counter == 4’d2) counter <= counter + 1;

// STEP 3: 3 clock cycles later, store the info for block
// we’re checking. If the ball is moving diagonally across
// blocks, need the data for the 2 adjacent blocks as well
else if(counter == 4’d3) begin

counter <= counter + 1’b1;
check_brick_dout <= brick_dout;

// Set address for the vertically adjacent (in the
// ball_yvel direction) block
check_address <= (check_gridy << 2’b11) + ball_gridx;

end

// Extra clock cycle for the BRAM
else if(counter == 4’d4)

counter <= counter + 1’b1;

// Store the information for the vertical block; set the
// address for the horizontally adjacent block
else if(counter == 4’d5) begin

counter <= counter + 1’b1;
vert_brick_dout <= brick_dout;

// Check horizontal brick
check_address <= (ball_gridy << 2’b11) + check_gridx;

end

// Extra clock cycle for the BRAM
else if(counter == 4’d6) counter <= counter + 1’b1;

// Store the information for the horizontal block
else if(counter == 4’d7) begin

counter <= counter + 1’b1;
horiz_brick_dout <= brick_dout;

end

// STEP 4: Update everything on screen
else if(counter == 4’d8) begin

counter <= counter + 1’b1;

// STEP 4a: Collision Detection -- if there is a
// collision, leave the ball in the same location for a frame
// and just change the x and/or y velocity

100

// A) Diagonal case: the ball wants to move to a block
// diagonal from its current one
if((check_gridx != ball_gridx) && (check_gridy != ball_gridy)) begin

// There will be a collision if there is a brick in
// the diagonal block, or if there are bricks both
// vertically and horizontally adjacent to the current block
if(check_brick_dout[3]

|| (vert_brick_dout[3] && horiz_brick_dout[3]))
had_collision <= 1’b1;

// Both adjacent blocks have bricks; break vertically
// adjacent one first
if(vert_brick_dout[3] && horiz_brick_dout[3]) begin

// break the vertical one first
check_address <= (check_gridy << 2’b11) + ball_gridx;
ball_yvel <= ~ball_yvel; // change the y velocity
color <= vert_brick_dout[2:0];

end

// Diagonal and vertically adjacent blocks have bricks;
// break diagonal one
else if(check_brick_dout[3] && vert_brick_dout[3]) begin

// break the diagonal block
check_address <= (check_gridy << 2’b11) + check_gridx;
ball_yvel <= ~ball_yvel; // change the y velocity
color <= check_brick_dout[2:0];

end

// If only the diagonal and horizontally adjacent
// blocks have bricks, break the diagonal one
else if(check_brick_dout[3] && horiz_brick_dout[3]) begin

// break the diagonal brick
check_address <= (check_gridy << 2’b11) + check_gridx;
ball_xvel <= ~ball_xvel; // change the x velocity
color <= check_brick_dout[2:0];

end

// Only diagonal block has a brick; break it and
// reflect back off the corner
else if(check_brick_dout[3]) begin

check_address <= (check_gridy << 2’b11) + check_gridx;
ball_xvel <= ~ball_xvel; // change both x,y velocities
ball_yvel <= ~ball_yvel;
color <= check_brick_dout[2:0];

end
end

// B) Horizontal/Vertical/Same Block Case
else if(check_brick_dout[3]) begin // hit a brick

had_collision <= 1’b1;
color <= check_brick_dout[2:0];
check_address <= (check_gridy << 2’b11) + check_gridx;

// change the appropriate velocity
ball_yvel <= (check_gridy == ball_gridy) ? ball_yvel : ~ball_yvel;
ball_xvel <= (check_gridx == ball_gridx) ? ball_xvel : ~ball_xvel;

end
end

// Extra cycle for det_brick_din to figure out what the next
// color of the brick that was hit should be
else if(counter == 4’d9)

counter <= counter + 1’b1;

101

// STEP 4b: Set the next color to be the data_in to the brick RAM
else if(counter == 4’d10) begin

counter <= counter + 1’b1;
change_brick_din <= next_brick_color;

end

else if(counter == 4’d11) begin
counter <= counter + 1’b1;

// STEP 4c: If there is a collision (had_collision = 1),
// pulse collision signal high and write the next brick
// information to that block
if(had_collision) begin

change_brick_we <= 1’b1;
collision <= 1’b1;

// STEP 4d: If the brick is red/green/blue, drop a
// bomb/expander/lifecapsule from the top center of that block
if((color == 3’b100) || (color == 3’b010)

|| (color == 3’b001)) begin
drop_gridx <= (vert_brick_dout[3] && horiz_brick_dout[3])?

ball_gridx : check_gridx;
drop_gridy <= check_gridy;
case(check_brick_dout[2:0])

3’b100: drop_bomb <= 1’b1;
3’b010: drop_expander <= 1’b1;
3’b001: drop_lifecapsule <= 1’b1;
default: begin

drop_bomb <= 1’b0;
drop_expander <= 1’b0;
drop_lifecapsule <= 1’b0;

end
endcase

end
end

// STEP 4e: If there wasn’t a collision but there are < 4
// breakable bricks left on screen, drop some bombs
else begin

if(((num_bricks_left == 1) && (last_brick_counter == 5’d31)) ||
((num_bricks_left < 3’d4) && (frame_counter == 7’d127))) begin
drop_gridx <= bomb_gridx;
drop_gridy <= 1’b0;

// Update where to next randomly drop a bomb
bomb_gridx <= bomb_gridx + 4’h5;
drop_bomb <= 1’b1;

end

// Complete the anticipated move
ball_x <= check_x;
ball_y <= check_y;

end

// STEP 4f: Update all object positions via drop_game_objects.v
update_clock <= 1’b1;

// STEP 4g: Shorten/lengthen paddle if hit by bomb/expander
if(shorten_paddle || lengthen_paddle) begin

if(shorten_paddle) begin
if(paddle_width <= paddle_shrink_amount)

paddle_width <= 9’d0;
else begin

paddle_x <= paddle_x + (paddle_shrink_amount >> 1’b1);

102

paddle_width <= paddle_width - paddle_shrink_amount;
end

end
else begin

if((paddle_width + paddle_grow_amount) > init_paddle_width) begin
paddle_x <=
(paddle_x<((init_paddle_width-paddle_width)>>1’b1))?

11’d0 :
paddle_x-((init_paddle_width-paddle_width)>>1’b1);

paddle_width <= init_paddle_width;
end
else begin

paddle_x <= (paddle_x < (paddle_grow_amount >> 1’b1))?
11’d0 : paddle_x - (paddle_grow_amount >> 1’b1);

paddle_width <= paddle_width + paddle_grow_amount;
end

end
end

// STEP 4h: Update paddle position
else begin

if(left)
paddle_x <=
(paddle_x < paddle_speed)? 11’d0 : (paddle_x - paddle_speed);

else if(right)
paddle_x <=
((paddle_x + paddle_width + paddle_speed) > screen_width)?

(screen_width - paddle_width) : (paddle_x + paddle_speed);
else paddle_x <= paddle_x;

end

// STEP 4i: Update # of lives if lifecapsule was caught
if(life_up)

lives <= (lives == 6’b100000) ? lives : lives << 1’b1;
end

// Clear variables when done using them for the frame
else if (counter == 4’d12) begin

counter <= 4’h0;
had_collision <= 1’b0;
collision <= 1’b0;
change_brick_we <= 1’b0;
shorten_paddle_b1 <= 1’b0;
shorten_paddle_b2 <= 1’b0;
shorten_paddle_b3 <= 1’b0;
shorten_paddle_b4 <= 1’b0;
shorten_paddle_b5 <= 1’b0;
shorten_paddle <= 1’b0;
lengthen_paddle <= 1’b0;
life_up <= 1’b0;
drop_bomb <= 1’b0;
drop_expander <= 1’b0;
drop_lifecapsule <= 1’b0;
update_clock <= 1’b0;

end

// Just update game once/frame
else begin

paddle_x <= paddle_x;
ball_x <= ball_x;
ball_y <= ball_y;

end
end

end
endmodule

103

104

A.26 trackerblob.v
// trackerblob.v
// 6.111 Fall 2006 Final Project
// Module created by Eddie Fagin

/* Trackerblob is a specialized sprite controller that remembers the path of the
pointer-block sprite. The module does this by updating a BRAM storing the
3-bit color value of each 16 x 16 pixel block on the 1024 x 768 screen.
Inputs

(x,y): the current pointer position, provided by the block_test module
(hcount, vcount): current VGA output position
vclock: 65-MHz system clock
frameclk: goes high at the end of each frame (negative edge of vsync)
reset: while high, this signal clears the BRAM canvas.

The reset signal sent to this module is guaranteed to be high
for at least one frame-clock cycle.

velocity: 4-bit speed and direction representation.
See the code for more details.

color: the current three-bit draw color set by switch[6:4]
draw_on: this module’s "enable" bit

Ouputs
pixel: determines the color of the current (hcount, vcount);

eight possible values.
*/

module trackerblob(x,y,hcount,vcount,vclock, reset,color,draw_on,pixel);
parameter WIDTH = 8’d64; // default width: 64 pixels
parameter HEIGHT = 8’d64; // default height: 64 pixels
parameter COLOR = 3’b111; // default color: white

input [10:0] x,hcount;
input [9:0] y,vcount;
input vclock, reset;
input [2:0] color;
input draw_on;
output [2:0] pixel;
reg [2:0] pixel;

// BRAM i/o connections, not including vclock
reg [2:0] drawcolor; // din
wire [2:0] tracepixel; // dout
reg [12:0] addr; // addr
reg we; // we

// This 8,192 x 3 BRAM stores the "picture" we’ve painted so far
// as a collection of 16x16 pixel blocks.
tracersingle t(addr,vclock,drawcolor,tracepixel,we);

always@(posedge vclock) begin
// While reset is held down, cycle through BRAM

// and clear it. The reset signal is guaranteed
// to be held down sufficiently long.
if (reset) begin

addr <= addr + 1’b1;
we <= 1’b1;
drawcolor <= 3’b000;

end

// Latch the color and set write-enable high at the cursor.
// Otherwise, model each BRAM location as a 16 x 16 block.
// We are always drawing the cursor as a 16 x 16 white sprite,

105

// using the top left corner as the reference point.
else begin

drawcolor <= color;
addr <= {vcount[9:4], hcount[10:4]};
we <= draw_on ? (hcount == x && vcount == y) : 1’b0;

if ((hcount >= x && hcount < (x+WIDTH)) &&
(vcount >= y && vcount < (y+HEIGHT)))

pixel <= COLOR; // draw cursor
else pixel <= tracepixel; // or draw rest of canvas

end
end

endmodule

106

A.27 video decoder.v
// Eddie’s note: I modified this code so that YCRCB was manipulated
// as a 24-bit value instead of a 30-bit value. (8 bits each, as opposed
// to 10 bits each.) Javier told me that the standard had changed to 24
// bits since his original module, and gave me a personal go-ahead to change
// this code. My changes were really minor, but necessary. They’re also
// somewhat spread out and Javier sort of told me exactly what to do, so
// I don’t really feel like I should take much credit for this.
//
// We also did not include the adv7185 modules to save space.
// These modules can be found on the 6.111 Fall 2005 web page.
//
//
// File: video_decoder.v
// Date: 31-Oct-05
// Author: J. Castro (MIT 6.111, fall 2005)
//
// This file contains the ntsc_decode and adv7185 modules
//
// These modules are used to grab input NTSC video data from the RCA
// phono jack on the right hand side of the 6.111 labkit (connect
// the camera to the LOWER jack).
//

///
//
// NTSC decode - 16-bit CCIR656 decoder
// By Javier Castro
// This module takes a stream of LLC data from the adv7185
// NTSC/PAL video decoder and generates the corresponding pixels,
// that are encoded within the stream, in YCrCb format.

// Make sure that the adv7185 is set to run in 16-bit LLC2 mode.

module ntsc_decode(clk, reset, tv_in_ycrcb, ycrcb, f, v, h, data_valid);

// clk - line-locked clock (in this case, LLC1 which runs at 27Mhz)
// reset - system reset
// tv_in_ycrcb - 8-bit input from chip. should map to pins [19:12]
// ycrcb - 24 bit luminance and chrominance (8 bits each)
// f - field: 1 indicates an even field, 0 an odd field
// v - vertical sync: 1 means vertical sync
// h - horizontal sync: 1 means horizontal sync
input clk;
input reset;
input [7:0] tv_in_ycrcb; // modified for 8 bit input - should be P[19:12]
output [23:0] ycrcb;
output f;
output v;
output h;
output data_valid;
parameter SYNC_1 = 0;
parameter SYNC_2 = 1;
parameter SYNC_3 = 2;
parameter SAV_f1_cb0 = 3;
parameter SAV_f1_y0 = 4;
parameter SAV_f1_cr1 = 5;
parameter SAV_f1_y1 = 6;
parameter EAV_f1 = 7;
parameter SAV_VBI_f1 = 8;

107

parameter EAV_VBI_f1 = 9;
parameter SAV_f2_cb0 = 10;
parameter SAV_f2_y0 = 11;
parameter SAV_f2_cr1 = 12;
parameter SAV_f2_y1 = 13;
parameter EAV_f2 = 14;
parameter SAV_VBI_f2 = 15;
parameter EAV_VBI_f2 = 16;

// In the start state, the module doesn’t know where
// in the sequence of pixels, it is looking.

// Once we determine where to start, the FSM goes through a normal
// sequence of SAV process_YCrCb EAV... repeat

// The data stream looks as follows
// SAV_FF | SAV_00 | SAV_00 | SAV_XY | Cb0 | Y0
// | Cr1 | Y1 | Cb2 | Y2 | ... | EAV sequence
// There are two things we need to do:
// 1. Find the two SAV blocks (stands for Start Active Video perhaps?)
// 2. Decode the subsequent data

reg [4:0] current_state = 5’h00;
reg [7:0] y = 8’h00; // luminance
reg [7:0] cr = 8’h00; // chrominance
reg [7:0] cb = 8’h00; // more chrominance
assign state = current_state;

always @ (posedge clk)
begin

if (reset)
begin
end

else
begin

// these states don’t do much except allow us to know where we are in the stream.
// whenever the synchronization code is seen, go back to the sync_state before
// transitioning to the new state
case (current_state)
SYNC_1: current_state <= (tv_in_ycrcb == 8’h00) ? SYNC_2 : SYNC_1;
SYNC_2: current_state <= (tv_in_ycrcb == 8’h00) ? SYNC_3 : SYNC_1;
SYNC_3: current_state <= (tv_in_ycrcb == 8’h80) ? SAV_f1_cb0 :

(tv_in_ycrcb == 8’h9d) ? EAV_f1 :
(tv_in_ycrcb == 8’hab) ? SAV_VBI_f1 :
(tv_in_ycrcb == 8’hb6) ? EAV_VBI_f1 :
(tv_in_ycrcb == 8’hc7) ? SAV_f2_cb0 :
(tv_in_ycrcb == 8’hda) ? EAV_f2 :
(tv_in_ycrcb == 8’hec) ? SAV_VBI_f2 :
(tv_in_ycrcb == 8’hf1) ? EAV_VBI_f2 : SYNC_1;

SAV_f1_cb0: current_state <= (tv_in_ycrcb == 8’hff) ? SYNC_1 : SAV_f1_y0;
SAV_f1_y0: current_state <= (tv_in_ycrcb == 8’hff) ? SYNC_1 : SAV_f1_cr1;
SAV_f1_cr1: current_state <= (tv_in_ycrcb == 8’hff) ? SYNC_1 : SAV_f1_y1;
SAV_f1_y1: current_state <= (tv_in_ycrcb == 8’hff) ? SYNC_1 : SAV_f1_cb0;

SAV_f2_cb0: current_state <= (tv_in_ycrcb == 8’hff) ? SYNC_1 : SAV_f2_y0;
SAV_f2_y0: current_state <= (tv_in_ycrcb == 8’hff) ? SYNC_1 : SAV_f2_cr1;
SAV_f2_cr1: current_state <= (tv_in_ycrcb == 8’hff) ? SYNC_1 : SAV_f2_y1;
SAV_f2_y1: current_state <= (tv_in_ycrcb == 8’hff) ? SYNC_1 : SAV_f2_cb0;

// These states are here in the event that we want to cover these signals
// in the future. For now, they just send the state machine back to SYNC_1

108

EAV_f1: current_state <= SYNC_1;
SAV_VBI_f1: current_state <= SYNC_1;
EAV_VBI_f1: current_state <= SYNC_1;
EAV_f2: current_state <= SYNC_1;
SAV_VBI_f2: current_state <= SYNC_1;
EAV_VBI_f2: current_state <= SYNC_1;

endcase
end
end // always @ (posedge clk)

// implement our decoding mechanism
wire y_enable;
wire cr_enable;
wire cb_enable;

// if y is coming in, enable the register
// likewise for cr and cb
assign y_enable = (current_state == SAV_f1_y0) ||

(current_state == SAV_f1_y1) ||
(current_state == SAV_f2_y0) ||
(current_state == SAV_f2_y1);

assign cr_enable = (current_state == SAV_f1_cr1) ||
(current_state == SAV_f2_cr1);

assign cb_enable = (current_state == SAV_f1_cb0) ||
(current_state == SAV_f2_cb0);

// f, v, and h only go high when active
assign {v,h} = (current_state == SYNC_3) ? tv_in_ycrcb[5:4] : 2’b00;

// data is valid when we have all three values: y, cr, cb
assign data_valid = y_enable;
assign ycrcb = {y,cr,cb};
reg f = 0;

always @ (posedge clk)
begin

y <= y_enable ? tv_in_ycrcb : y;
cr <= cr_enable ? tv_in_ycrcb : cr;
cb <= cb_enable ? tv_in_ycrcb : cb;
f <= (current_state == SYNC_3) ? tv_in_ycrcb[6] : f;

end
endmodule

109

A.28 vram display.v

///
// I. Chuang’s code, grabbed and modified from the Fall ’05 6.111 website.
// -EDDIE’S MODIFICATION:
// 8 bits x 4 pixels / line --> 24 bits x 1 pixel / line
//
// generate display pixels from reading the ZBT ram
// note that the ZBT ram has 2 cycles of read (and write) latency
//
// We take care of that by latching the data at an appropriate time.
//
// Note that the ZBT stores 36 bits per word; we use only 24 bits here.
// The original module stored four 8-bit values per line - we changed that to
// only store one 24-bit value per line and read accordingly.

module vram_display(reset,clk,hcount,vcount,vr_pixel,
vram_addr,vram_read_data);

input reset, clk;
input [10:0] hcount;
input [9:0] vcount;
output [23:0] vr_pixel;
output [18:0] vram_addr;
input [35:0] vram_read_data;

wire [18:0] vram_addr = {1’b0, vcount, hcount[9:2]};

wire [1:0] hc4 = hcount[1:0];
reg [23:0] vr_pixel;
reg [35:0] vr_data_latched;
reg [35:0] last_vr_data;

// This part was modified by Eddie to read a 24-bit RGB value.
always @(posedge clk) begin
last_vr_data <= (hc4==2’d3) ? vr_data_latched : last_vr_data;
vr_data_latched <= (hc4==2’d1) ? vram_read_data : vr_data_latched;

vr_pixel <= last_vr_data[23:0];
end
endmodule

110

A.29 xvga.v

// NOTE: EDDIE AND IRENE DID NOT CHANGE THIS FILE, WE JUST USED IT!

module xvga(vclock,hcount,vcount,hsync,vsync,blank);
input vclock;
output [10:0] hcount;
output [9:0] vcount;
output vsync;
output hsync;
output blank;
reg hsync,vsync,hblank,vblank,blank;
reg [10:0] hcount; // pixel number on current line
reg [9:0] vcount; // line number

// horizontal: 1344 pixels total
// display 1024 pixels per line
wire hsyncon,hsyncoff,hreset,hblankon;
assign hblankon = (hcount == 1023);
assign hsyncon = (hcount == 1047);
assign hsyncoff = (hcount == 1183);
assign hreset = (hcount == 1343);

// vertical: 806 lines total
// display 768 lines
wire vsyncon,vsyncoff,vreset,vblankon;
assign vblankon = hreset & (vcount == 767);
assign vsyncon = hreset & (vcount == 776);
assign vsyncoff = hreset & (vcount == 782);
assign vreset = hreset & (vcount == 805);

// sync and blanking
wire next_hblank,next_vblank;
assign next_hblank = hreset ? 0 : hblankon ? 1 : hblank;
assign next_vblank = vreset ? 0 : vblankon ? 1 : vblank;
always @(posedge vclock) begin

hcount <= hreset ? 0 : hcount + 1;
hblank <= next_hblank;
hsync <= hsyncon ? 0 : hsyncoff ? 1 : hsync; // active low

vcount <= hreset ? (vreset ? 0 : vcount + 1) : vcount;
vblank <= next_vblank;
vsync <= vsyncon ? 0 : vsyncoff ? 1 : vsync; // active low

blank <= next_vblank | (next_hblank & ~hreset);
end

endmodule

111

A.30 zbt 6111.v
// NOTE: EDDIE AND IRENE DID NOT CHANGE THIS FILE!! WE ONLY USED IT.

// File: zbt_6111.v
// Date: 27-Nov-05
// Author: I. Chuang <ichuang@mit.edu>
//
// Simple ZBT driver for the MIT 6.111 labkit, which does not hide the
// pipeline delays of the ZBT from the user. The ZBT memories have
// two cycle latencies on read and write, and also need extra-long data hold
// times around the clock positive edge to work reliably.
//

///
// Ike’s simple ZBT RAM driver for the MIT 6.111 labkit
//
// Data for writes can be presented and clocked in immediately; the actual
// writing to RAM will happen two cycles later.
//
// Read requests are processed immediately, but the read data is not available
// until two cycles after the intial request.
//
// A clock enable signal is provided; it enables the RAM clock when high.

module zbt_6111(clk, cen, we, addr, write_data, read_data,
ram_clk, ram_we_b, ram_address, ram_data, ram_cen_b);

input clk; // system clock
input cen; // clock enable for gating ZBT cycles
input we; // write enable (active HIGH)
input [18:0] addr; // memory address
input [35:0] write_data; // data to write
output [35:0] read_data; // data read from memory
output ram_clk; // physical line to ram clock
output ram_we_b; // physical line to ram we_b
output [18:0] ram_address; // physical line to ram address
inout [35:0] ram_data; // physical line to ram data
output ram_cen_b; // physical line to ram clock enable

// clock enable (should be synchronous and one cycle high at a time)
wire ram_cen_b = ~cen;

// create delayed ram_we signal: note the delay is by two cycles!
// ie we present the data to be written two cycles after we is raised
// this means the bus is tri-stated two cycles after we is raised.

reg [1:0] we_delay;

always @(posedge clk)
we_delay <= cen ? {we_delay[0],we} : we_delay;

// create two-stage pipeline for write data

reg [35:0] write_data_old1;
reg [35:0] write_data_old2;
always @(posedge clk)

if (cen)
{write_data_old2, write_data_old1} <= {write_data_old1, write_data};

// wire to ZBT RAM signals
assign ram_we_b = ~we;
assign ram_clk = ~clk; // RAM is not happy with our data hold

// times if its clk edges equal FPGA’s

112

// so we clock it on the falling edges
// and thus let data stabilize longer

assign ram_address = addr;

assign ram_data = we_delay[1] ? write_data_old2 : {36{1’bZ}};
assign read_data = ram_data;

endmodule // zbt_6111

113

	Overview
	Project Modules
	Controller
	rgbfilter.v
	centerofmass.v
	COMvelocity.v
	xvga.v
	Modified Video Modules

	Game Modules
	superbreakout.v
	block_detector.v
	circle.v
	det_brick_din.v
	detect_bombs.v
	display.v
	drop_game_object.v
	expander_blob.v
	game_over.v
	intertitle.v
	modblob.v
	recorder.v
	score.v
	speed.v

	System
	Hex2Dec and Tencounter
	LED Display
	NegEdgeDetector

	Paint Mode
	Block Test
	HighForFrame
	TrackerBlob

	Testing and Debugging
	Eddie
	Irene

	Conclusion
	Verilog Code
	block_detector.v
	block_test.v
	centerofmass.v
	circle.v
	debounce.v
	delayN.v
	det_brick_din.v
	detect_bombs.v
	display.v
	drop_game_object.v
	expander_blob.v
	finalproject.v
	game_over.v
	gen_model.v
	hex2dec.v
	highforframe.v
	intertitle.v
	modblob.v
	negedgedetector.v
	ntsc2zbt.v
	recorder.v
	rgbfilter.v
	score.v
	speed.v
	superbreakout.v
	trackerblob.v
	video_decoder.v
	vram_display.v
	xvga.v
	zbt_6111.v

