
Point-to-point Data Link, CollaborativeWhiteboard, and Voice ConferenceMIT 6. 1 1 1 Project ProposalMichael F. RobbinsEmail: mrobbins@mit. edu Scott B . OstlerEmail: sostler@mit. eduNovember 3, 2006
Table of contentsTable of contents . 11 Overview . 22 Modes of Operation . 22 . 1 Local Mode . 32 . 2 Loopback Mode . 32 . 3 Link Mode . 33 Implementation . 33. 1 Optical Components . 43. 2 Analog Front-End . 53. 3 Encoder . 63. 4 Guard Emitter . 63. 5 Shifter . 63. 6 Synchronizer . 63. 7 Decoder . 73. 8 Packet Engine . 73. 9 Whiteboard . 73. 1 0 Visualizer . 83. 1 1 Voice . 84 Testing . 95 Work Assignment . 91

1 OverviewWe intend to construct a digital data link using LEDs and photodiodes to implement acommunications channel in free space. A packet engine will interface between the serialstream of data coming in over the channel to packets that are useful to speci�c applica-tions. We will construct two simple applications to run over this protocol, namely a col-laborative whiteboard with shared drawing space betwen the two stations, and a simulta-neous voice conference.A major part of the e�ort in this project is aimed at making a reliable digital datalinkeven in the face of contamination from many noise sources, such as ambient sunlight,indoor lighting, and then simply the fact that there is an unknown channel gain becausethe stations may be close together or far apart. However, most noise sources are narrow-band in nature, for example from line level lighting at 1 20Hz, or some �uorescent ballastsnear 26kHz. For this reason, we have chosen to use Orthogonal Frequency Division Multi-plexing as our digital encoding scheme. While this may sound complicated, it is in realityjust using a many on-o� modulated carriers at once. A bit being sent over the chanenlmay corresond to a bin in the frequency domain, and using the inverse FFT, are able toconstruct a time domain signal to send. The narrowband noise will contaminate some ofthese bits, but using forward error correction techniques such as Hamming codes, we cantolerate a few bands of interference. The receiving end will take the FFT of the time-domain signal, and will be able to extract the various bits that were sent. When com-pared to simply sending the raw bitstream, this technique provides resistance to narrow-band noise and also to impulse (�popcorn�) noise. This is a good use of the muscle of theFPGA and should be interesting to watch in action.This kind of frequency-domain encoding requires special timing synchronizationbecause of the random phase o�set between stations. We have devised a simple strategywith a frequency-domain �guard sequence� which will alert the receiver to the correct syn-chronization phase, and by transmitting each FFT length twice, we are guaranteed tohave a signal that is properly phased on alternating groups of samples. (A simliar tech-nique is done in the time domain over any asynchronous serial link, where the signal isoversampled to wait for a start bit.) While this technique cuts the channel capacity inhalf, it allows us to make a fairly simple way of guaranteeing synchronicity.
2 Modes of OperationAlthough our goal is for two independent stations to interact over our communicationschannel, we will be developing our project using only one labkit. Therefore, to facilitate2

testing of our module' s functionality during development, we have speci�ed three modes ofoperation, with only one mode requiring both labkits.The three modes are as follows:2. 1 Local ModeIn local mode, there is only one labkit, and the application modules do not interactwith the communications channel. For example, the Voice module immediately plays backwhat it records. The goal of this mode is to test the application functionality independentof the communications module.2. 2 Loopback ModeIn loopback mode, there is only one labkit, and the application modules transmit theirdata over the communications channel, back to themselves. For example, the Voicemodule records voice samples, transmits them over the communications channel, thenplays them back. The goal of this mode is to test the interaction of the communicationschannel and the application modules.2. 3 Link ModeIn link mode, there are two labkits, and the application modules in each communicateas peers. For example, the Voice modules in each labkit transmit recorded voice samplesover the communications channel into the other, for playback. This mode is the desiredfunctionality of the project, but will only be attempted when the two other modes areworking correctly.
3 ImplementationA draft block diagram is shown below in Figure 1 :3

F P G A M o d u l e s

L E DC CL o o pD A C
S h i f t e r F F T � 1G u a r dE m i t t e rE n c o d e r

P a c k e t E n g i n e

F F TS y n c h r o n i z e rD e c o d e r

A D CL P FT I AP h o t o D i o d e

V i s u a l i z e rV o i c e W h i t e b o a r d
Z B T R A M P S 2A C 9 7 X V G A

Figure 1 . Draft block diagram.3. 1 Optical ComponentsOur communications scheme is generally applicable to transmitting digital data overany noisy analog channel. While most communications systems today lie in the radio andmicrowave regions of the RF spectrum, we have chosen to use visible light as our mediumof choice. This provides several advantages for this project, including easy development ofanalog components, relatively easy debugging, and easy ways to �distort� the channel andintroduce noise. 4

For the transmitting end, we are using a simple red Light Emitting Diode (LED) , adevice which has a remarkably linear relationship between operating current and lightintensity. It is also possible to modulate an LED quickly. A current control loop will beconstructed to take the voltage output of the DAC (described later) and adjust the cur-rent going through the LED. A generic red LED, easily obtained in the 6. 002 lab or else-where, will be the used.On the receiving end, a photodiode and transimpedance ampli�er will measure thelight received. A photodiode, when properly biased, will allow a reverse current to �owproportional to the intensity of light striking its sensor area. The transimpedance ampli-�er will convert this current into a voltage. After going through a simple RC highpass�lter to attenuate ambient light (DC) and line voltage lighting (1 20Hz) , this voltage willproceed into the analog front end. Several options are currently being considered for thephotodiode and transimpedance ampli�er. One is to use a Texas Instruments OPT1 01 , achip available in DIP package that contains both the sensor and the ampli�er. Thismakes it very easy to use in our system, but its frequency response characteristics are notideal, and discrete and separate sensor and ampli�er systems are also being investigated.3. 2 Analog Front-EndAs almost all of our signal processing will be done digitally, we need a way to convertthe analog waveforms to and from digital representations. Currently, we intend to use a1MS/s rate for both ADC and DAC functions. While we have not yet determined thenecessary resolution, this resolution is much more critical for the ADC than for the DAC,because there will be an unknown, time-varying channel gain that must be handled whilestill providing a useful level of dynamic range.For the DAC, we are currently considering using an 8-bit DAC. This is fairly easy toobtain (or even build with an R-2R network) , and we are currently considering the AnalogDevices AD7528 for this function. It is available in a DIP package for easy use on thelabkit breadboard, and is relatively inexpensive, and has free samples available from themanufacturer.For the ADC, we have two options: we can either use a very high resolution ADC sothat as the transmitter and receiver move apart, there are still enough bits of dynamicrange to provide useful data, or alternatively, we can implement some sort of automaticgain control (AGC) , which would allow us to maximize our dynamic range regardless ofthe attenuation. We choose to implement the latter, using the second half of the AD7528DAC as a multiplying gain stage, and then using an inexpensive successive approximationADC for the input. We are currently considering the AD7821 , a high speed 8-bit ADCwhich is available in a DIP package and has free samples available from the manufacturer.It should also be noted that the analog front end is independent of the actual physicalchannel, and if signi�cant di�culty emerges in constructing the optical LED/photodiodecircuitry, we can easily instead convey the signal over a pair of wires. Although thiswould make for a less impressive demonstration, the signals would still be carried in ananalog way that makes them more resistant to narrowband noise.5

3. 3 EncoderThe fundamental frame of our system is a 9-bit word, which will be processed by thepacket engine and routed appropriately. The signal redundancy is layered on top, and theencoder module is only aware that it needs to protect these 9 bits.As we are currently considering using FFTs with a length of 64 time samples, we canadd considerable redundancy with the (64-9)=55 additional frequency bins. (Not all ofthese are available; the low frequencies should be avoided due to 1 /f noise, and some fre-quencies must be reserved for the guard signal.) We will use a Hamming code to allow forthe correction of several of the nine bits in the word.The input of this module will be the 9-bit word, and the output will be a 64-bit longsignal corresponding to which frequencies to excite.3. 4 Guard EmitterAs described in the overview, we must avoid phase synchronization issues by some-times inserting a special guard frame, which will be recognized by the synchronizer. Thismust happen more frequently if there is a large clock o�set between stations. The guardemitter module will either propogate the 64 bits from the encoder, or will insert its guardsignal and delay the encoder.3. 5 ShifterBecause the output from Xilinx IP Core FFT modules is not in time sequence order,the shifter will bu�er the output of an inverse FFT until all time sequences are ready. Itwill then play the entire sequence to the DAC. (It will actually play the entire sequencetwice, so that there is a guarantee that the receiver end will have one phase-synchronousFFT frame in which to get the data.)3. 6 SynchronizerThe synchronizer takes the output of the FFT and performs three important tasks:� Uses a threshhold to determine whether each bin is �on� or �o��.� Determines whether we have received a guard frame, and if so, resets its internalcounter� Reads alternating FFT frames (those that are synchronous with the guard frame)and passes the 64-bit on/o� threshhold status to the decoder.6

3. 7 DecoderThe decoder module takes the 64-bit long map of which frequency bins have beendetected and applies the same Hamming code as used in the Encoder module. By cor-recting the appropriate bits, the original 9-bit word is determined and sent to the packetengine.The decoder also provides useful statistics on the number of bit errors to the visualiza-tion module.3. 8 Packet EngineThe Packet Engine transmits packetized units of information (called packets) from theapplication modules to the communications channel. It also dispatches the packets that itreceives to the appropriate application module. We describe each function in more detail.Application modules give packets to the Packet Module by serially saving a bit-streaminto a packet queue unique to that module; when the stream has been completely savedinto the queue, it is ready to be sent over the channel. The Packet Engine alternativesbetween queues, sending one packet from each. Packets are converted into a series offrames, and then each frame is sent to the Encoder.Frames consist of eight bits of information as well as a control bit. A packet is repre-sented by a start frame, a length frame, an appropriate number of data frames, and �nallya checksum frame. The start frame' s control bit is set high, and the start frame' s payloadidenti�es the packet' s intended application. The length frame' s control bit is set low, andits payload is the number of data frames in the packet. Each byte of the packet is put intoits own data frame, with the control bit of the data frames set to zero. The �nal frame fora given packet is a checksum frame, with low control bit, and payload containing an 8bitchecksum for the packet.The Packet Engine receives frames from the Decoder module, and assembles thoseframes into packets, which are then dispatched to the appropriate Application module.When a packet is assembled, the Packet Engine veri�es the packet' s checksum before dis-patching it to appropriate Application module. If a packet becomes corrupted, due to amissing frame or invalid checksum, that packet is discarded by the Packet Engine, and theEngine simply waits for the next start frame.3. 9 WhiteboardThe Whiteboard module conducts an interactive drawing session between two stations.A user on one station can draw lines and shapes on their own station' s display, using theirPS/2 mouse, and their drawings will be transmitted across the communications link andalso replicated on the other station' s display. In this way, two users can collaborativelydraw a single picture. 7

The Whiteboard module recognizes drawing commands entered via the mouse, andcomputes the corresponding picture to display on the station' s video monitor. The mouseacts as a paintbrush tool, that is moved by physically moving the mouse. A pointer isdrawn on the screen to indicate the mouse' s current position. When the mouse' s leftbutton is held down, the area under the pointer is considered to have been drawn upon.At that point, an instruction corresponding to that action is formulated, and sent to oneor both of the local station and the remote station. When a Whiteboard module receivesa drawing instruction in its drawing path, it modi�es its palette according to the instruc-tion.The path of a given drawing instruction depends on the station' s operating mode:� In Local Mode, the Whiteboard module directs all drawing instructions into itsdrawing path. This means simply painting the palette with the user' s mouse-strokes, for the purpose of testing the drawing mechanism.� In Loopback Mode, the Whiteboard module directs all drawing instructions o thePacket Engine. The Packet Engine then transmits the instruction over the commu-nications channel. When the Packet Engine receives the drawing instruction asinput, it dispatches that instruction to the Whiteboard module' s drawing path.� In Link Mode, the Whiteboard module combines the functionality of the other twooperating modes; that is, it internally draws its own drawing instructions, whilealso sending them through the Packet Engine.The Whiteboard module has an output to the Visualizer, to draw its palette on thescreen.3. 1 0 VisualizerThe Whiteboard and Visualizer share a framebu�er in the ZBT memory. The visual-izer displays statistics about detected signal and noise levels, bit errors, etc. This frame isthen sent to a VGA output for display.3. 1 1 VoiceThe Voice module conducts an audio link between two stations. A user on one stationcan speak into their microphone, and a digitally sampled recording of their voice will betransmitted across the communication link, and played back on the other station' s head-phones. In this way, two users can talk together.The Voice module records and plays back digitized audio samples. Similar to Lab 3,the Voice module periodically samples the AC97' s microphone output to record audio, andon playback outputs those recorded samples to the AC97' s input. The module uses anear-ideal low-pass �lter to remove harmonics from the output. The Voice Module con-nects to the Packet Engine, so that it can both send and receive audio packets over thestation' s link layer. 8

The path of a given audio sample depends on the station' s operating mode:� In Local Mode, the Voice module directs all recorded samples into its playbackpath. This means simply replaying the recorded samples, for the purpose of testingthe recording and playback mechanisms.� In both Loopback Mode and Link Mode, the Voice module directs all recordedsamples through the Packet Engine. The Packet Engine then transmits the audiosample over the communication channel. When the Packet Engine receives anaudio sample as input, the Engine gives it to the Voice module as a sample to beplayed. The Voice module then directs that sample to the playback path. Notethat the only di�erence between these two modes is whether the Packet Enginegives the Voice module the samples that it recorded, or the samples that anotherVoice module recorded; this is not an important distinction to the Voice module.The Voice module has an output to the Visualizer, to graphically display diagnosticinformation.4 TestingBecause we have designed the system with the multiple modes of operation in mind,we will be able to separately test the applications from the data link. We will also beable to seperately test the physical channel from the link encoding algorithms. This mod-ularity in testing is important because of the complexity of this task.5 Work AssignmentMike Robbins will work on the analog frontend, and Scott Ostler will work on theapplication modules. The Packet Engine, and associated Encoder/Decoder modules, willbe mutually designed. We have experience working together, and are comfortable sharingthe design of the analog/digital interface.

9

