Real-time Lightsaber Generator

Joyce Chen, Michael Price, Hui Ying Wen

- Goals:
 - Generate live video of Star Wars lightsaber beam
 - Demonstrate realistic behavior in a duel
- Inputs:
 - Inertial sensors in lightsaber prop
 - NTSC video
- Output: VGA display
- Design challenges:
 - Obtaining accurate, uncorrupted sensor data
 - Tracking the lightsaber pose
 - Properly accounting for perspective in the shape of the lightsaber
- Cool, optional features:
 - Stereo sound with Doppler effect
 - Glow and motion blur
 - Multiple lightsabers

Block Diagram

Inertial Sensors

Joyce Chen

- Accelerometer: Analog Devices
 ADXL213
 - Low Cost 1.2g Dual Axis
 Accelerometer Measure both
 dynamic and static acceleration
 - Use Cx and Cy capacitors to select bandwidth.
 - Output typically has bandwidth of 2.5 kHz
- Gyroscope: Analog Devices ADIS16100
 - ±300°/sec Yaw Rate Gyro with SPI Interface
 - z-axis rate detection : positive output voltage for clockwise rotation about axis.

Video Input & Marker Detection

Joyce Chen

- Staff video module with ZBT video memory
- Marker detected by colour
- Position of marker filtered for noise and returned to Video
 Output module
 Video data

Perspective transformation

Michael Price

- A cylindrical lightsaber beam is:
 - Parallelogram if viewed in an orthographic projection
 - Trapezoidal in reality (each of 4 corners must be treated separately)
- Problems
 - Rotate and translate to match real position and orientation of lightsaber
 - Convert a field-of-view volume (global coordinates) into a flat rectangle (screen coordinates)

Math module

Michael Price

- Numerical format
 - 18 bit, fixed point, two's complement
 - Range: -8 to 8 meters
 - Resolution: 0.25 mm
 - Homogeneous coordinates [x, y, z, w]
- Parameters and inputs
 - Measured angles [phi, theta]
 - Measured position of marker on screen
 - Lightsaber coordinates (X_local): 4 points at corners
 - Boundaries of view volume (assume symmetry to reduce number of variables)
- Method: 3 phases matrix storage in RAM
 - Generate matrices based on sensor input
 - Rotation/translation (R) and perspective projection (P)
 - Multiply: X_global = R * X_local
 - Multiply: X_screen = P * X_global

x_limit y_limit z_near z_far		data add	a_out lr_out
theta phi	Module connections		
clk update done		ı	U1 math

Block diagram (not shown)

Dependence on intermediate RAMs

Update signal triggers sequence of matrix calculations

Other modules access screen coordinates from memory

Video Output

Hui Ying Wen

Inputs

- hcount, vcount, hsync, vsync
- From Video Input module: saber_xbase [10:0], saber_ybase [9:0]
- From Math module: x and y values of 4 points of saber

Outputs

- pixel (RGB, to monitor)

Description

- Sprite module: draws light-saber on top of camera input
- Tests whether current hcount, vcount inputs fit within four boundaries of saber
- Complexity: multiplication and division on fixed-point values of 18-bit precision. No significant RAM memory.
- Also handles video output from ZBT memory, Y'CbCr to RGB conversion
- Extras: shading, blur

Timeline

Nov. 27 (after Thanksgiving Break)

- already have operational individual modules
- start interfacing between modules

<u>Dec. 4</u>

- have handle built and interfaced

<u>Dec. 11</u>

- presentation and report