
Virtual Conducting

Andy Lin and Brandon Yoshimoto

Project Overview

� Description:
� An interactive music player which allows the user to control the sound of a composition

through hand movements.
� The user conducts holding a blue LED in each hand
� Movements are interpreted as beats and affect the playback of music
� Music qualities controlled:

� Volume: left hand controls low frequencies, right controls high frequencies
� Articulation: left hand controls low frequencies, right controls high frequencies
� Tempo: right hand controls the tempo of the piece

� Inputs:
� Camera Video
� Music

� Outputs:
� Visualization on Monitor
� Speakers

High-Level Description
� Two main units:

� Video Processing
� Inputs: Camera data
� Outputs: Video display and movement qualities

� Audio Processing
� Inputs: Movement qualities and audio
� Outputs: Processed audio

Video Unit
� 3 Main Parts:

� Camera Input Storage and Retrieval: Retrieves data from the camera
� Visualization and Video Processing: Calculates position of the hands and displays on monitor
� Motion Analyzer: Interprets hand movements

Camera Input Storage & Retrieval
� Each pixel stored as 8-bits: 5 bits for Y, 3 bits for Cb
� Store four pixels per location in ZBT
� ZBT Memory usage: (729 wide x 487 tall)/4 = 88755 locations per frame
� 65 Mhz clock

Camera Image

Conductor

Input

Visualization and Video Processing
� Calculates position of the user’s hands: left in the left half plane, and right in the right half
� Displays hand positions

Details
� Video Interpretation:

� For noise reduction: Requires at least three successive pixels to be blue before
registering a pixel as part of the hand

� Position Calculator:
� Calculates a running sum of x and y positions for the blue pixels in each half of

the screen.
� Uses Xilinx Pipelined Divider v3.0 to divide this sum by the count of pixels of the

desired color to get the average coordinates of the hand
� Display Output: 3 components

� Displays blue pixels detected by the camera, leaving other colors as black

� Sprite to follow left hand movement

� Sprite to follow right hand movement

Motion Analyzer
� Determines the start and end of a beat

� When coordinates stay within a
certain distance for more than 10
frames, beat ends

� After a beat ends, when
movement starts again, a new
beat starts

� Methods for calculating qualities:
� Amplitude: difference in the x and

y coordinates of successive beat
starts

� Acceleration: average second
difference of the 10 frames
following a beat start

� Beat period: number of samples
counted between two beat starts.

Audio Processing
� Beat-by-beat

processing
� One beat stored in

SRAM at a time
� End/start of beat in

RAM identified by Beat
detector

� Beat signal instructs
system to move onto
next beat.

� Timings
� Audio read in from

ROM every clock period
(27 Mhz)

� Final audio output at 48
Khz

� LP/HP Filter
� 15 segment convolution

� Beat detector
� LPAudio[7:0] exceeding

a threshold amplitude
signifies a beat

� BeatAudio[15:0]
contains LP signal in
BeatAudio[15:8] and LP
signal in BeatAudio[7:0]

� Flash ROM
� Data fed in directly

through RS232
interface on PC

Flash ROM

LPF HPF

Beat Detector

Audio[7:0]

LPAudio[7:0]

ZBT SRAM

BeatAudio[15:0]

Tempo Modulator

Articulation and

Volume

Modulator

AC 97

Interface

Main

FSM

MusicBeat

Flash_reset_b

Flash_addess[23:0]

Flash_data[15:0]

Flash_byte_b

FinalAudio[7:0]

RAMRdata[35:0]

OutAudio[15:0]

Ram_data[35:0]

beat_start

acceleration_left[10:0]

amp_left[10:0]

AC 97

Command_data

ac97_ready

Ac97_synch

Ac97_bit_clock

Ac97_sdata_out

Command_address

Command_valid

BeatPeriod[10:0]

beat_period[10:0]

AccL[10:0]

VelL[10:0]

ROM FSM

SRAM FSM

RAMWdata[35:0]

RAMWE

OBeatPeriod[10:0]

T
R
d
a
ta
[3
5
:0
]

T
W
d
a
ta
[3
5
:0
]

T
W
E

Ram_address[18:0]

T
a
d
d
r[1

8
:0
]

We_b

Ram_cen_b

acceration_right[10:0]

amp_right[10:0]

AccR[10:0]

VelR[10:0]

HPAudio[7:0]

Audio

Processing

Module

beat

** Note: all modules will

include a 27 Mhz CLK and

RESET inputs

beat_start

L
a
s
tA
d
d
r[1

8
:0
]

F
irs
tA
d
d
r[1

8
:0
]

BeatPeriod[10:0]

RAMAddr[35:0]

MusicBeat

Tempo Modulator Theory

� Divides Audio signal into
indivisible “divisions” whose
time period is greater than that
of the lowest audible sound.

� Scientifically, sounds less than
20hz are inaudible

� We will use 15 Hz divisions –
3200 samples (48 kHz)

� Divisions removed or added to
change tempo

� Has been tested on Matlab

Tempo Modulator
� Division Converter

� Rounding by truncation
� Simplifies original signals into 3-bit representations
� Interval[2:0] will be the truncated version of

OBeatPeriod[10:0]
� Skip[2:0] will be the positive difference between the

two truncated versions of beat periods
� Add <= (BeatPeriod > OBeatPeriod)

� Division counter
� Counts the number of divisions.
� Takes an enable signal from Address Counter which

is triggered every 3200 address counted.
� If division count = interval[2:0], skip[2:0] is added or

subtracted from the accessing address via
Addr_mod[2:0]

� Special Cases
� Problem when approximated speed increase is

inaccurate, or the beat period suddenly changes.
� If beat arrives prematurely, rest of beat that needs to

be played is cut off
� If beat arrives late, repeat last few divisions until beat

arrives.

Tempo

Modulator

Division

Converter

BeatPeriod[10:0]

OBeatPeriod[10:0]

skip[2:0]

interval[2:0]

add

Division counter

Address Counter

enable Addr_mod[2:0]

OutAudio[15:0]

beat

Tempo Modulator

OutAudio[15:0]

BeatPeriod[10:0]

OBeatPeriod[10:0]

beat

T
R
d
a
ta
[3
5
:0
]

T
W
d
a
ta
[3
5
:0
]

T
W
E

T
a
d
d
r[1

8
:0
]

L
a
s
tA
d
d
r[1

8
:0
]

F
irs
tA
d
d
r[1

8
:0
]

T
R
d
a
ta
[3
5
:0
]

T
W
d
a
ta
[3
5
:0
]

T
W
E

T
a
d
d
r[1

8
:0
]

L
a
s
tA
d
d
r[1

8
:0
]

F
irs
tA
d
d
r[1

8
:0
]

Articulation and Volume Modulator

� Mathematical multiplication in
time domain of tempo-modified
audio and “Articulation
Function”

� Separate Articulation and
Volume Modulating for LP and
HP signals

� Articulation Function
� 3rd degree polynomial

A(t)

t

(One beat duration)

Address

Counter

Articulation

Function

Addr[18:0]

X

OutAudio[15:8] Result[7:0]

Articulation and Volume Modulator Unit

Address

Counter

Articulation

Function

Addr[18:0]

X

Articulation and Volume Modulator Unit
+

Result[7:0]

FinalAudio[7:0]

acceleration_left[10:0]

amp_left[10:0]

beat_period[10:0]

acceleration_right[10:0]

amp_right[10:0]

beat_period[10:0]

RAM FSM

� Access Control
� Tempo Modulator and Main FSM share access to

ZBT RAM
� Tempo Modulator at 48 kHz, Main FSM at 27 mHz
� Data from Main FSM delayed 3 clock cycles

� Allocation Alternator
� Insures data from previous beat is not overwritten

by next beat
� Addresses fed into SRAM FSM are “virtual

addresses.” SRAM FSM adjusts these addresses
to correspond to actual addresses.

Tempo Modulator RAM Read (48 kHz)

Main FSM RAM Write (27 mHz)

