Morse Code Decoder

A 6.111 Final Project by
Christopher Stephenson

Why choose Morse Code?

- Interesting to get a digital system to read
- Relatively easy to get digital system to read
- Good opportunities for interesting input / output
- Gives something to play with

Morse Code Specification

- Timings based off dots which are 1 unit
- Dash is 3 units
- Pause between dots and dashes 1 unit
- Pause between letters 3 units
- Pause between words 7 units

System Overview

Screen Driver

Encoder

Decoder

Converter in Detail

- Must determine the "Clock"
- Must classify pulse lengths into dots and dashes
- Must classify gaps as Inter character or inter word spaces
- Determines threshold
lengths from previous
- Determines threshold
lengths from previous stats
- Allows it to be robust
- Uses Moving Average to change of symbol rate

Extensions

- Using an FFT, detect what part of an audio spectrum contains a Morse signal
- Requires DSP to clean up and demodulate signal
- Process "Non Ideal" Morse - i.e. Human tapped Morse
- Requires that the Converter be made more robust
- Recognize a tapper's Fist
- Not sure if this is actually possible given the time, but might be worth a shot!

Timeline

Week 1 Screen Driver Complete
Week 2 Encoder Complete
Week 3 Main Decoder Complete
Frequency Scanner and Final Report Complete

11/18-11/24
11/25-12/01
12/02-12/08

12/09-12/12

The aim is to get everything up to main decoder done If the project slips, the frequency scanner will be dropped If the project under runs, a more robust converter will be added

Summary

- Produce a Morse Code decoder
- Decoder outputs to a screen
- Can also produce Morse from Keyboard input
- All done by the $12^{\text {th }}$ of December

Samuel Morse, Inventor of the Morse Code

