Need for Speed: Hacker’s Trail

Richard Chan, Calvin Chung, Fan Yang

December 15, 2007

ABSTRACT

“Hacker’s Trail” is a racing simulation system that allows the user to create his own race
track and subsequently race in it. The user can create his desired track simply by moving
the mouse. With a built-in double buffer, the track is being displayed on the screen while
it is being traced out. Instead of using a typical wired steering wheel, the user will have

an “air wheel” that can detect his motion and adjust both the direction and the speed of

car through the game logic. More specifically, the user will wear two colored gloves that
will be used in conjunction with a video camera so that his hand motion can be detected.

TABLE OF CONTENTS

Table of Contents
List of Figures
Overview
Description
1. High Level Design
2. Input Components
2.1 Camera Input Modules
2.2 Hand Finder Module
2.3 Hand Logic Module
2.4 Camera Corner Display
3. Game Logic Modules
3.1 GameModule
3.2 CarRotate
3.3 Graphics Module as a Logic Module
3.4 Car Sprite Module
3.5 Localized Pixel Module
4. Map Modules
4.1 Mouse Input Modules
4.1.1 ps2_mouse Module
4.1.2 mouse_diff Module
4.2 Map Module
4.2.1 Overview
4.2.2 ZBT Memory
4.2.3 Double Buffer
4.2.4 Address Generator
4.2.5 ZBT 2-cycle delay
4.2.6 Checkpoints
4.2.7 Sharing ZBT Memory
4.3 inCircle module
4.4 ZBT 6111 Driver
5 Output Components
5.1 Graphics module as an Output Module
5.2 Menu module
5.2.1 CStringDisp module
5.2.2 Finish_game module
5.2.3 Lap_disp module
5.2.4 Lights module
5.2.5 Ready screen module
5.2.6 Timer modules
5.2.7 Title module
5.2.8 Speed Gauge
5.3 Circles module
5.4 RGB ADD module

e e
—
—

01N WD AW WDNN

NN NN NN MNMNMNNDINDNEF b b b b b e b b e e i i = = \©
WO/ === = OO0V IIAOANULMnN,S, BAWWWW~ROO

6. Testing and Debugging
6.1 Input Components
6.1.1 Color Detection
6.1.2 Hand Finder
6.2 Game Logic
6.2.1 Signed/Unsigned Error
6.2.2 Sprite Resizing Error
6.2.3 Pixel Localization Delay Error
6.3 Map Module
6.4 Integration Process
Conclusion
Reference
Appendix A — Angle ROM Generator
Appendix B — Verilog code

24
24
24
24
24
24
25
25
25
26
28
29
30
31

i

LIST OF FIGURES

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.

Top Level Block Diagram

Camera Input Modules

Height of Hands

Orientation of Hands

Game Logic Modules

ROM Table for CarRotate

Localized Coordinates for Mapping Car Sprite
Localization of (hcount, vcount)

Map Module Block Diagram

ZBT Clock Cycle Diagram

Output Module: from graphics to video out
Tiles for Background and Track

~ D D W N

11
12
14
15
19
20

il

OVERVIEW

“Hacker’s Trail” is an innovative racing system with a well-designed user interface. It
allows user to create his own racing track and control his car by driving an “air wheel” in
front of a video camera. Through the game logic the acceleration and direction of the car
is adjusted, as the user aims to reach checkpoints 7 times in the shortest time interval
possible.

The game starts off in edit mode with a circular track blob on top of the grassland. As the
user drags the mouse, circular tracks are stored and displayed around every mouse
position passed through, ultimately creating the desired track. Track data is continuously
stored and updated, and by building a double buffer system, the track can be displayed on
the screen real-time. In preparation for the play mode, at this stage the user also
determines two checkpoints along the track by clicking the left and right mouse buttons.

As the user transits into play mode, his car shows up on the screen behind a ready screen.
As the ready screen disappears and a countdown is started, the user should be ready in
front of the video camera wearing a red glove on one hand and a blue glove on the other.
The race officially starts as the timer displayed on the top right corner starts running. To
control the car, user moves his hands as if he’s holding a wired wheel. The video camera
detects his hand motion and sends in the signal to the game logic control, subsequently
adjusting the direction and speed of the car. The higher he lifts his hands, the faster the
car goes. Turning the wheel beyond 45 degrees to either side indicates a turn. On the top
left hand corner is a mini-screen which displays to the user his hand positions as detected
by the video camera. The user can also review his actions by observing the speed gauge
on the screen and the rotation of his car. If the user happens to run his car out of the track,
the car will decelerate substantially until it gets back to the track entirely.

The goal of the game is to alternately visit the two pre-determined checkpoints a total of
7 times in the shortest time possible. While practice makes perfect, the difficulty of the
game can be increased simply by resetting a game and creating a different track. If [were
you, I would never stop playing it.

DESCRIPTION

1. High Level Design
whee! height
and angle
tv in NTSC o Whese!
—_— Height & Game Logic
Whee! Angle
car position s out of track
car arientation hit_check _point 1
hit_check point 2
PS2 mouse
MAP (Track) Graphics
track
pixel
pixe!
Menus RGBADD video out

Figure 1. Top Level Block Diagram

The system takes in two inputs: the PS/2 mouse and the TV input, where the mouse
cursor is used to draw the track and the TV input received from a camera is used to
simulate the racing wheel.

The system can basically be divided into three major components: 1) the TV input, which
is driven by a camera and the logic that translates the signal into wheel height and wheel
angle; 2) the Game Logic and Graphics modules, which includes logics for updating the
game state according to inputs every time frame; 3) the Map module, which updates
according to signals from the PS/2 mouse and signals the Graphics module with whether
certain pixels are covered by the track.

The following sections will describe the three modules in order. Lastly, section 5 will
describe how the display is actually driven by the system.

2. Input Components

2.1 Camera Input Modules (Fan Yang and 6.111 staff)

Adv7185
I
[9:01 Hand finder
tv_in_ycrcb
v > divider
Ntsc_decode —» Game Logic
[10:0] x1 [15:0] height
[2|9:0] [17:0] [9:0] y1 [15:0] angle
yercb vr_pixel l
v »{ Hand logic
ntsc2zbt |
| [10:0] x2 [10:0] x1,x2
) [9:0]y2 [9:0] yl,y2
[35:0] Hand finder
vram_read_data L
v > divider Camera_corner display
vram_display

Figure 2. Camera Input Modules

From a high level standpoint, the input component encapsulates the logic of using the
camera to detect user’s hand positions, and then translates the hand positions into height
and rotation signals that can be used to control the car. The camera input module consists
of the adv7185, ntsc_decode, ntsc2zbt, vram_display, hand finder, divider, hand logic,
and camera_corner display modules. The adv7185 module takes the data from the
camera and converts it to a stream of LLC data. The ntsc_decode module then takes in
this stream of LLC data to generate the corresponding pixels into YCrCb format. The
ntsc2zbt module is modified so that 18 bits of YCrCb data per pixel are buffered into the
ZBT memory. Since the ZBT is 36 bits wide, YCrCb data for 2 pixels can be stored in
each entry of ZBT. This provides enough bits to accurately detect objects with specific
colors. Since we are detecting colored pixels, Cr and Cb components are much more
important than the Y component. Therefore, to further enhance the color detection, the
top 9 bits of Cr and the top 9 bits of Cb are buffered into ZBT memory while none of the
Y bits is buffered. Several modifications were made to the ntsc2zbt module provided by
the 6.111 staff. The major changes include having 18 bits of input for the YCrCb data and
updating the output address and data only when two bytes are ready. The vram_display
module then read the YCrCb values from the ZBT memory which can be then used by
hand finder module.

Three different methods of storing the pixel data has been experimented during the
course of the project. For each of the methods, I stored 18 bits of data per pixel, but these

methods differed in how the 18 bits of data is allocated and the quality of the color
detection.

In the first method the most significant 6 bits were stored for each of the red, blue, and
green. The YCrCb values were first converted to RGB values and then the RGB values
were stored in the ZBT. The problem with this method lies in the color detection.
Detecting color using RGB values works reasonably well when there’s one color of
interest. However, it becomes extremely challenging to detect two different colors
simultaneously using RGB values because there’s often overlap between the two colors
and colors of the environment. This observation could be explained by the fact that in
RGB, colors are a combination of red, blue, green. Having combinations of three colors
to represent the color of interest is prone to have overlaps with the surrounding
environment.

The second method I tried was storing the most significant 6 bits of each of the Y, Cr,
and Cb values. This method worked better than the first method because it didn’t have as
much of an overlap with the colors of the surrounding environment. However, the Y
value didn’t contribute to the color detection as much as the Cr and Cb values. Therefore,
this led me to the decision of choosing to store as many bits as possible for the Cr and Cb
values, which helped me arrive at the third method that I experimented.

In the third method, the 18 bits were used to store only the Cr and Cb values. This
method worked noticeably better than the second method. The background noise was
reduced significantly. Red and Blue were chosen as the two colors for color detection
because their Cr and Cb values are most different from the colors of the surroundings.
Therefore, this is the method that I chose to use for this project.

2.2 Hand Finder Module (Fan Yang)

The hand_finder module takes in the YCrCb values from the Camera Input Modules and
outputs the x, y values of the hand position after the given frame has passed. For each
pixel, the module compares the YCrCb value of the pixel against a certain threshold of Cr
and Cb values. If the threshold is met, then the pixel is counted as a hand pixel. The
module also keeps a running sum of the hcount and vcount values of the hand pixels
detected in a given frame. The horizontal and vertical center of mass of the hand pixels
can be found by dividing the sum of hcount and vcount by the number of pixels. The
division is done by using two instance of the divide module provided by Xilinx Core
Generator. Due to the timing delays through the divide module, the divide operation
starts only after the given frame has passed.

With modularity and reusability in mind, the module contains four parameters for
specifying the appropriate range of Cr and Cb: CR._ MAX, CR_MIN, CB. MAX, and
CB_MIN. This design allows the user to specify the threshold for each instance of this
module. Therefore, for calculating the position of two hands, two instances of the same
module could be created, and the color ranges could be specified using the “defparam”

method in Verilog. This design makes it very easy to provide support for more players.

For instance, for creating a two player game, we can simply make four instances of the

hand finder module and specify the color range for each module. This design makes the
system more scalable as a whole.

2.3 Hand Logic Module (Fan Yang and Richard Chan)

The Hand Logic module takes in the (X, y) position of both hands and outputs the height
and angle of the hands. The height and angle can then be used by the Game modules to
compute the acceleration and rotation of the car. The height is calculated by taking the
average of the y values of the two hands.

A

Figure 3. Height of the hands

This method of calculating the height of the two hands is reliable because the height of
the hands will be independent of the angle between the two hands.

counterclockwise 45°
angle =2

not turning not turning

-45°

Figure 4. Orientation of hands

Since the orientation of the wheel will determine which direction the car is turning. The
angle of the hands could have three values: 0, 1, or 2. If the hands are moving in a
counterclockwise direction, the angle is 2; if the hands are moving in a clockwise
direction, the angle is 1; if the hands are not moving, the angle is 0. The angle is
determined by the angle formed by the line connecting the two hand positions and the
horizontal line. If the angle is between 45 degrees and 135 degrees, then the hands are
turning counterclockwise. If the angle is between -45 degrees and -135 degrees, then the

hands are turning clockwise. If the angle is between -45 degrees and 45 degrees or
between -135 degrees and 135 degrees, then the hands are recognized as not turning. In
other words, if the angle formed by the hands is less than 45 degrees from the horizontal,
then the hands are recognized as not turning. This decision was made based on the
observation that the user tend to move hands inadvertently. On the other hand, when the
user intentionally moves his hands to turn the car, the user usually moves his hands at
least 45 degrees. Therefore, to avoid making the car overly sensitive to the movement of
the user’s hands, the decision was made to have 45 degrees as a threshold.

2.4 Camera Corner Display (Fan Yang)

Camera Corner Display provides the user with a view of the position of his hands so that
he can see whether or not the camera is picking up the right angle and height. Since the
camera input is very sensitive to light and the color of the environment, this module
serves as a great debugging tool. This module takes in the (x, y) position of the two hands
and outputs pixels that essentially displays the user’s hands as two colored blobs on the
top left part of the screen. The size of the display is 1/16 of the screen. The vertical height
of the display is V4 of the vertical height of the screen, and the horizontal length of the
display is % of the horizontal length of the screen. The ratio % was chosen because it’s a
power of 2 so the division by 4 could be easily implemented in Verilog by a bit shift and
would not result in any delays. Also, the ratio % is very reasonable for the game—
allowing the user to have enough screen area for the game playing and big enough view
of his hand positions.

In order to display the relative hand positions correctly inside the display area on the top
left of the screen, the x, y values of the blob is essentially the x, y values of the hand
positions divided by 4. In each frame, this module compares the values of x/4 and y/4
against the hcount and vcount. If the hcount is between x/4-10 and x/4+10 and the vcount
is between y/4-10 and y/4+10, then the pixel is colored with its corresponding color. The
same logic is applied to the other set of (x, y) values.

3. Game Logic Modules (Richard Chan)

The Game Logic modules contain the logic behind how the game works, which is mainly
separated into two main modules: the GameModule, which controls what happens to the
game after each iteration (what happens in the next frame), and a Graphics module,
which is responsible for not only drawing the background, the track and the car onto the
screen, but also the collision detection of different objects in the game.

wheel angle,
wheel height,

car_orientation X,
car_orientation vy,

track
cptlblob
cpt2blob

I

background pixel
track pixel

play mode, car x
vsync o
GameModule car_y
—> >
<—
lapnum, is_out_of track
speed 4 is_at cptl
) is_at cpt2
angle, dirx, - -
trigger diry
A 4
CarRotate
All numeric data is 16 bits long.
(e.g. wheel angle, wheel height,
car_orientation_Xx, etc.)
lapnum is 3-bit wide.
Pixels are all 24-bit wide.
Figure 5:

Graphics

pixel
—>

car_orientation x
car_orientation_y
car X, car y
hcount next3,
vcount next3

A 4

car_pixel

CarSprite

car_orientation_ X
car_orientation y
car X, car_y
hcount next3,
veount next3

A 4

localx, localy
localcx, localcy

Localize

Game Logic Modules.

3.1 GameModule (Richard Chan)

The GameModule is the module that actually holds the state of the game: where the car is
located, the direction of the car and the speed of the car. Its main responsibility is to take
in the user inputs (wheel angle, wheel height) and computes new car positions and
velocities based on those inputs as well as the current game state (e.g. whether the car is
outside of the track) at every time frame. Each time frame in the system is basically one
frame refresh, so, in other words, GameModule will update the car positions and
velocities at every negative edge of the vsync, which signifies the end of a frame refresh.

The next car position is computed by multiplying the car’s direction with its current
speed, which essentially gives us the velocity of the car, and then adding the velocity
onto the current position of the car.

The change in car speed depends on a few things: whether the user wishes to accelerate
(which, in the case of using the air wheel, is lifting the wheel above the center of the
screen), decelerate, or simply not apply gas, and if the car is out of track. If the car is out
of track, it should not be able to go as fast as if it is on the track. To implement that, I
basically allow users to accelerate (at higher rate for in-track, and at lower rate for out-of-
track) until they hit some maximum speed limit (which is, again, higher for in-track and
lower for out-of-track).

Note that the out-of-track signal is received from the Graphics module. Unlike some
simple conventional game systems, collision detection is nof computed directly using the
location and directions of the car. Instead, we decided to detect collision as the screen is
being rendered. Since, in the Graphics module, we will be rendering every pixel of the
screen anyway, we can easily include logic to detect whether there is a pixel on the
screen where both a pixel of the car and a pixel of the track overlap or do not overlap.
The collision logic will be covered in more details in the next section.

The GameModule also keeps track of the lap number that the car is currently on. Starting
from 0 whenever the system resets, the GameModule increments the counter whenever
the car collides with the next checkpoint (the module keeps track of which checkpoint is
next, starting with the 1* checkpoint and alternating whenever the lap number increases).
Again the collision logic is done in the Graphics module, where the collisions with the
checkpoints are represented with is_at cptl and is_at_cpt2.

When the user turns the wheel, the GameModule must update the orientation of the car
accordingly. As we briefly mentioned before, the GameModule keeps in memory the
location of the car (X, y coordinates), the speed of the car, and the orientation of the car.
To reduce complexity, the logic for rotating the car is separated into a sub-module: the
CarRotate module.

3.2 CarRotate (Richard Chan)

The CarRotate module takes in the angle of the wheel and outputs the current orientation
of the car (dir_x, dir_y). The orientation of the car changes basically every time the
trigger input changes from negative to positive or vise versa. Note that the vector (dir_x ,
dir_y) is set to be normalized with length 256, which basically represents an 8-bit
decimal point value for a unit vector.

Originally, CarRotate was very complicated, implemented by doing matrix multiplication
with a rotation matrix (e.g. using [cos -sin ; sin cos]) to update the orientation. However,
since there is always some error in multiplying with irrational numbers such as sine and
cosine, the orientation vector (dir_x, dir_y) deviates a little every iteration. Because the
orientation vector is used for mapping pixels of the car sprite to the screen (covered in
more details in the Graphics module), the errors could accumulate to the point where the
car could resize itself to a size bigger than the entire screen.

A quick hack was implemented to fix the problem by testing the length of the vector
every time. If the length is too high, we will multiply dir x and dir_y by a fraction
slightly lower than 1 to “renormalize” the vectors. Note that we prefer not to truly
normalize the vectors since normalizing requires taking the square root to find the length
and dividing from numbers that are not powers of 2 (unable to do bit shift) — both of
which requires many clock cycles to compute.

The hack was clearly not the best way to fix the problem. Eventually I realized a much
simpler and more reliable solution to the problem — to simply pre-compute the values for
each vector from 0 to 360 degrees and place them into a ROM. The current
implementation uses this approach, where the values are stored in a ROM with 128 rows,
32 bits each. Each row contains a 16-bit number for dir_x and the 2™ 16-bit number
represents dir_y. Turning left and right is simply implemented as lowering and increasing
the address of the ROM to read from.

0.00 deg | 0000000100000000 0000000000000000 =256 | 0

2.85deg | 0000000011111111 0000000000001100 =255112
5.70 deg | 0000000011111110 0000000000011001 =254 |25
8.55 deg | 0000000011111101 0000000000100101 =253 |37

W=D

Figure 6: ROM Table for CarRotate

The above figure shows first 4 rows in the ROM storing the vectors at certain angles 0 to
360, normalized with length 256. To change the angle when triggered, we keep a register
on the last trigger value. If that is different from the new trigger value, update the address
appropriately.

10

3.3 Graphics Module as a Logic Module (Richard Chan)

The Graphics Module has two main responsibilities: to display the state of the game
(using the inputs from the GameModule) into the screen and to record collisions between
different objects as it is rendering the screen, making it essentially both a Logic and an
Output module.

On the highest level, the Graphics Module is pretty simple. Basically, it takes in a “track”
input, which is the signal of whether the user has drawn a track over that point of the
screen (hcount, veount) and the car positions and orientations signals from the Game
Module. It sends the car positions and orientations signals into a Car Sprite module,
which would output the RGB value of the car at (hcount, vcount) (for pixels the car sprite
does not span over, the RGB value will be 0, signifying transparency).

Using those signals, the module can figure out whether the pixel should be a background
pixel (if there is no track or car pixel there), a track pixel (if there is track but no car
pixel) or a car pixel (if there is a car pixel at that point).

When outputting the RGB value of the pixel at (hcount, vcount), it can check if the pixel
has a car pixel but no track on it. If so, that means the car is out of track and a register
is_out_of track, which is also an output to the game module, will be set to high.
is_out_of track remains high until the frame refreshes again — when there is a posedge on
vsync, at which time is_out_of track will be set to 0.

3.4 Car Sprite Module (Richard Chan)

The Car Sprite Module is what actually maps pixels of the car sprite onto the screen. The
module basically has to do two things: 1) convert the (hcount, vcount) coordinate into a
coordinate frame local to the orientation of the car; 2) using the localized coordinate, map
the coordinate to an address on the ROM storing the actual image of the car and reads the
RGB value from it.

To reduce the complexity of the module, the logic for localizing pixels are done in the
LocalizePixel sub-module, where we basically pass it the center of the car, the direction
of the car and the hcount, vcount coordinate. The LocalizePixel will convert the (hcount,
vcount) coordinate into a frame local to the car and return the local coordinates as outputs
in localx, localy, localcx, localcy. (relative to upper-left corner or center of car,
respectively).

11

(0,0)

(54,0)

(0,64)

(54,64)

Figure 7: localized coordinates for mapping car sprite

If the local coordinates are outside boundaries of the car size (56x64), the output can
simply be set 0, since the car does not span over those pixels.

Otherwise, if the local coordinates are indeed within range, using the localized coordinate,
we can map the coordinate to a row in the ROM to get actual RGB data. For the image |
used, I loaded a 54x64 bitmap onto the ROM, each row representing a 24-bit RGB value
(using 54x64 = 3456 rows). The address is basically just:

(localx + localy*56)
where localx and localy are the local coordinates with respect to the top-left corner of the
car.

3.5 Localize Pixel Module (Richard Chan)

The Localize Pixel Module is responsible for localizing (hcount, vcount) coordinates into
a coordinate frame local to the car, using the car position and orientation.

12

(dir_x, dir_y)
4

i

ount-car_x, vcounr-car_y)

{car _

(dir_y, -dir_x)

Figure 8: Localization of (hcount, vcount)

Basically, the Localize Pixel module takes the difference between (hcount, vcount) and
the position of the car (car_x, car y), giving us the vector from the center of the car to the
pixel on the screen.

We know the orientation of the car (dir_x, dir_y), and a vector normal to it, which can be
computed as (dir_y, -dir_x) (rotation by 90 degrees). The (dir_x, dir_y), as described in
the previous section, always has length 256. Therefore, if we take the dot products of
(hcount-car x, vcount-car y) with (dir_x, dir_y), it will return the component of the
vector (hcount-car_x, vcount-car_y) in the direction of the car, multiplied by 256.
Similarly, taking the dot products of (hcount-car x, vcount-car y) with (dir y, -dir_x)
will give us the component of the vector normal to the direction of the car multiplied by
256. Bit-shifting both components by 8 will give us the coordinates of (hcount, vcount)
localized at (car_x, car y) in the direction of the car.

While the algorithm is perfectly fine, since we are localizing one pixel per clock cycle
under the 65MHz clock, it is also crucial to be able to finish computation within one
clock cycle (in less than 15.38 ns). To achieve that, we can pipeline our operation. For
example, my implementation would first store the products of (hcount-car_x) and
(veount _-car y) with dir_x and dir y into registers. Use another cycle to compute the dot
product by summing up the products. And, finally one more cycle for shifting by 8 bits to
output the correct coordinate.

In this setup, each input given to the Localize Pixel module will have the outputs ready
after 3 clock cycles. In order to keep that synchronized with other parts of the system that
depends on the current hcount, vcount, we can use as inputs in Localize Pixel the values
of hcount and vcount 3 clock cycles in advance. To implement that, we have an xvga
module that starts counting 3 clocks in advance. The signal from that will be sent to the
Local Pixel to keep it in-sync.

13

4 Map Modules
4.1 Mouse Input Module (Fan Yang and Calvin Chung)

4.1.1 ps2_mouse Module (Fan Yang and 6.111 staff)

In our project, the ps2 mouse is used to draw the track. We used the ps2_mouse module
provided by the 6.111 staff as a basis for implementing the mouse functionality. There
are two major modifications to the ps2_mouse module. The first modification is that the
speed of movement of the mouse is decreased by a factor of 4. The exact implementation
is just a simple bit shift. This change was made because we want to guarantee that while
drawing the track, the mouse doesn’t move so fast relative to the screen refresh rate that
the track becomes discontinuous. Various values were experimented, and a factor of 4
seems necessary and sufficient to guarantee that the track doesn’t become discontinuous
when the user moves the mouse fast. The second modification is that a 32.5 MHz clock is
used instead of the SOMHz clock (discussed in detail later in the report).

4.1.2 Mouse Div Module (by Calvin Chung)

One problem we encountered while using the mouse to draw out the track was that the
mouse input was very jumpy. Turned out the clock speed of 65 MHz was too fast for the
mouse. To solve the problem, a 32.5 MHz clock whose clock signal is simply inverted at
every positive clock edge of the 65 MHz clock is built. A clock with double the period
and half the frequency of the 65 MHz clock is created.

14

4.2 Map Module (by Calvin Chung)
4.2.1 Overview

The main function of the map module is to construct a double buffer with the ZBT
SRAM chips so as to allow drawing of track while displaying it on the monitor. On top of
that, the module is responsible for sharing ZBT memory as the memory is also used to
store video camera data during play mode.

vram_addr, vram_write data, vram_read_data, pixel, ram0_clk,
vram_we, btn_click, clk, reset, edit, raml clk, ram0 we b, raml we b,
vsync, mouse X, mouse_y, hcount, ram0 cen b, raml cen b, cptl_x,
veount, ram0_data, ram1_data cptl y, cpt2 x, cpt2_y, ram0_address,
raml_address, ram0_data, ram1_data

clk, zbt0_we, zbt0_read data,

.zth_addr, ram0_clk, ram0_we b,
write_data_0, ram0_address,

ram(_data

ZBTO0

clk, zbtl we,

zbtl addr, Zbtl _read_data,
write data 1, raml_clk, raml_we b,

raml_data raml address,

ZBT1
clk, reset,

radius_square, _

mouse_X_use, inbound

mouse_y_use,

hcount, vcount

InCirclel

Figure 9. Map Module Block Diagram

15

4.2.2 ZBT memory

A ZBT SRAM chip is a high-speed memory device (up to 167 MHz). On the backside of
the PCB are two of these synchronized chips, with the memory size of each chip being
512k*36. While the ZBT memory has a high speed, it is very tricky to interface to. ZBT
is a pipelined device, with its data bus being delayed by two cycles after address and
control signals. That is, when a read cycle is being initiated at cycle n, data from address
input will not be available until n+2 cycles. The same principle applies to writing data
into ZBT memory. The pipelining complicates subsequent interfacing with the ZBT
memory, as described in the following paragraphs. Also, ZBT memory doesn’t have dual
ports to read to and write from the same address concurrently. To solve this problem and
to prevent glitches, a double buffer is built to allow simultaneous read-write processes.
The 2-cycle delay property of a ZBT memory is illustrated in the following diagram:

3 £ E 3 ¥
= = = = = e
CLK / e o s G G
~WWE 5
ADDR [mo)= a1 e e e a3 M aa X
P o
DATA N\ D&)X DI X D2 X D3 »—
[FPGA sets up Fead Dhaza |:'|".L|":L'-\.|-i
address, —WE= beeging by FPGA. |
[FRGA ses up Write Dlata driven Crara i-aLn'.I:-u-'J:E
address, —WE=0 bagine by FPGA by RAM

Figure 10. ZBT clock cycle diagram "

4.2.3 Double Buffer

The idea of a double buffer is to have two memories with identical structure to act as one
memory device that supports read-write functionality during edit mode. In this system,
the ZBT memory is used to store a 1-bit value for each pixel on the screen, indicating
whether a track is drawn on that pixel. At any one point of time, one of the ZBT
memories will be read and the other one will be written to. Let’s say ZBTO is being read
and ZBT]1 is being written to. As we provide ZBTO0 with an address, we get the data
corresponding to that address 2 clock cycles later. Data line corresponding to each
address is 36 bits long, and in this module, we only use 32 bits of each line for reason
described in the following address generator section. Each of these 32 bits corresponds to
one certain pixel. If a track exists in that pixel, a value of “1” is stored in that bit.

At every rising edge of the clock, the module receives updated mouse-x and mouse-y
positions from the mouse input. As described in the incircle module, the system places a
circular blob on every mouse position input. This indicates where the new section of the

16

track lies. Each bit of data from ZBTO0 indicates whether there is a track at that pixel
previously. From the incircle module we know whether a track is newly drawn at that
pixel. Combing the information with an “OR” function, we know whether a track should
exist in that pixel or not after updated mouse positions are being processed. The result is
then stored into a write data register, a register that stores the updated data to be written
into memory. As described earlier, ZBT1 memory is being written into when ZBTO is
being read from. Every time a bit is updated and stored into the write data register, it will
be written into the ZBT1 memory. Thus after the pointer of the screen goes through the
whole frame, ZBT1 contains the most updated positions of the whole track.

At frame refresh, the roles of ZBTO and ZBT1 are swapped. With the most updated
positions of the track, ZBT1 now acts as the memory being read. ZBTO is now being
written to. This swap occurs at every frame refresh, resulting in a continuous updating of
track positions. As for the output of the track onto the screen, at every rising edge of the
clock, the value of the bit being processed is displayed onto the screen. This value is
obtained from the memory being read from, i.e. ZBTO in our previous example. Through
this process the read-write functionality of the double buffer is established.

4.2.4 Address Generator

Since each ZBT memory only has 512,000 addresses, it is not possible to allocate a
unique address for each pixel. As a result, an address generator is built to match each
address to multiple pixels. In this system, each address contains track values for 32 pixels
to best utilize the memory while minimizing combinational delay.

Each pixel is first assigned a serial no according to the formula (vcount * 1344 + hcount).
Each pixel thus has a unique serial no. This serial no is then divided by 32. The quotient
equals the address line corresponding to that pixel, while the remainder represents the bit
no in that address line. Originally a divider module was used to divide the serial no by 36
to maximize memory space, but it turned out that the combinational delay of the divider
module exceeded our limitations. By dividing the serial no by 32, we can easily extract
the quotient and remainder by shifting. This improves the system efficiency to a great
extent and completes the task at the same time.

4.2.5 ZBT 2-cycle delay

As mentioned before, the ZBT memory has a 2-cycle delay in writing and reading data.
Write/read addresses and data input/output have to be adjusted to account for this delay.
The goal is to obtain old track data for a particular pixel at the same time when the new
data for that pixel is being written into the memory. To prepare for this, the read address
is being input two cycles earlier. The write data is also saved for 2 cycles before it is
actually being read into the memory. Various pipelining issues further complicate the
handling of the ZBT delay.

17

4.2.6 Checkpoints

As part of the design, users have to visit 2 checkpoints 7 times in total to finish the game.
These checkpoints are created during the edit mode. While moving the mouse creates the
track, clicking mouse buttons create the two checkpoints. Button click inputs from the
mouse are sent to the map module every clock cycle. When a button is clicked, its value
is set to “1”. Thus by detecting the rising edge of the button click signal, the
corresponding mouse position can be recorded. In our design, the two checkpoints are set
by clicking the left and right buttons of the mouse. Since the previous checkpoint is
replaced if the mouse button is clicked again, users can freely move the checkpoints
during edit mode. The x-y coordinates of the checkpoints are sent to the game logic
module to keep track of the performance of the player during play mode.

4.2.7 Sharing ZBT memory

One major issue we encountered while implementing the design is the sharing of ZBT. In
edit mode, both of the ZBT memories are being used as part of the double buffer. Each of
the 2 memories alternates between write enabled and write disabled. In play mode,
however, the video input modules need a ZBT memory to temporarily store the camera
data to carry out the center of mass algorithm. Fortunately in play mode, the track is no
longer being drawn and only one ZBT memory is needed to output the track.

In the map module, for each ZBT memory an instance of the zbt 6111 driver is created to
interface the system with the ZBT by connecting data in registers with physical
input/output to the ZBT memory chip. Originally another instance of the zbt 6111 is
created in the top-level module to interface the camera data with the ZBT memory chip,
resulting in two drivers for one of the two ZBT memories. A mux is then used to
determine which driver to process data from based on whether the game is in play mode
or in edit mode. This method turns out to be faulty most probably because ram_data is an
inout port. In the end, the driver in the top-level module is eliminated. Instead, the
addresses, write enable signal and data are passed from the video camera modules
directly to the map module to be processed. By sharing the same driver, ZBTO is used to
store camera input data during play mode, while ZBT1 is used to output track data.

18

4.3 InCircle Module (Calvin Chung)

The incircle module is used to determine whether a point lies within the fixed radius of a
given point. Within the system this module is used to determine whether a pixel is within
a given radius of latest mouse position, in turn deciding whether the pixel is part of the
track.

First the absolute difference between the respective x and y coordinates of the two points
are being computed. This is done by first comparing the two numbers and then
subtracting the smaller number from the larger one. The absolute differences in the x-axis
and the y-axis are then squared and added up and compared with the square of the fixed
radius. If the sum of squares is smaller than the square of the radius, the output signal will
be set to 1. Otherwise it is set to 0.

4.4 Zbt_6111 Driver (6.111 Staff)

This module provides the interface to the ZBT memory chips. Taking in addresses, write
enable signals, write data and physical data from ZBT, this module produces the
necessary physical output to the ZBT and also data read from the memory. It takes care
of the 2-cycle delay of writing into ZBT by storing data for 2 extra cycles within the
module.

5. Output Components

19

MapTile TrackTile L. .
ip, pixel from various menu modules
background_ pixel track pixel
v v

Graphics MenuModule

pixel pixel
v
RGB ADD CirclesModule
pixel pixel
A 4 v
RGB ADD
All pixels are 24-bit long. .
video_ out

Figure 11: Output Modules: From Graphics to Video_Out.

The output modules are what actually generate the display to the screen. Basically, on the
highest level, the Output Modules includes three parts: 1) The Graphics Module, which
outputs to the entire screen according to the state of the game; 2) The Menu Module,
which lays out various menus on top of the game graphics; 3) The Circles Module, which
outputs where the checkpoints are located and to show the position of the cursor in edit

mode.

20

5.1 Graphics Module as an Output Module (Richard Chan)

The functions of the Graphics Module as a Logic module has been described previously
in Section 3.3. Other than the Car Sprite module, the Graphics Module must also produce
the background and track pixels.

For aesthetical purposes, both the track and background will be generated using a ROM
containing a bitmap of a track or background tile.

Figure 12: Tiles. Left: Background. Right: Track.

Both of these tiles are 128x128 in size, so the address for looking up pixels can simply
depend on hcount and vcount. (e.g. the current implementation uses “hcount * 128 +
veount” as the address, which will simply tile the two images across the screen in a grid-
like manner).

5.2 Menu Module

The Menu Module takes in a collection of different menu items (such as the speed gauge,
ready screen, the timer, etc.). Each menu module has a “pixel” output providing the RGB
value, and an “ip” output, which stands for “in-picture.” Modules that are in-picture for
certain (hcount, vcount) coordinates means that those modules should be visible at those
locations.

The Menu Module basically does a bit-wise OR on the outputs of the various RGB values
coming out of the menu modules if any one of their in-picture signal is on. The system is
designed such that no modules overlap, so when the ip values are high, the result of doing
an OR over all the RGB values will give us the one RGB value generated by the menu
that has ip set to high.

Note that we are doing a bit-wise OR for optimization purposes. The same result may be
obtained using a series of Multiplexers over the ip values but will require significantly
higher delay. Keeping the delay low is crucial for having a completely glitch-less display.

21

5.2.1 Cstringdisp Module (6.111 Staff and Calvin Chung)

This module is responsible for generating the characters to be displayed on the screen.
Code used here is almost the same as the one provided on the website, except that RGB
output values are changed from 3-bit to 24-bit.

5.2.2 Finish_Game module (Calvin Chung)

This module displays a finish screen showing “Good Job!” when the game is over. Once
the input finish_game signal is set to “1”, the finish screen is enabled and shows up on
top of the track. The character display is done through the cstringdisp module.

5.2.3 Lap_Disp Module (Calvin Chung)

This module is responsible for displaying the number of checkpoints visited by the user.
Receiving a 3-bit lap_num signal from the game logic module, this module displays the
number together with the characters “CPT #” onto the screen through the cstringdisp
module. The default lap num is 0 and the maximum lap_num allowed is 7.

5.2.4 Lights Module (Calvin Chung)

This module controls the traffic lights at the left side of the interface, which consists of
four circles in additional to a background. As ready screen module sends in a ready done
signal, the module starts counting the number of frame refresh. For every 60 frame
refresh (1 second) within the first 240 refresh (4 seconds), a different light is turned on.
Three red lights from top of bottom are first turned on and turned off in series each with a
period of 1 second, while a green light at the very bottom lights up after 3 seconds and
stays on for the rest of the game. Incircle instances are used to determine whether a pixel
1s within the radius of a certain circle. As count register reaches 239, the green light is
turned on for a second and the start_game signal is set to “1”. This signal is output to the
game logic module which in turns enables car motion.

5.2.5 Ready _Screen Module (Calvin Chung)

This module displays a ready screen as the player enters play mode to allow time for the
player to get ready. Once the player hits the button to transit the game from edit mode
into play mode, the module starts counting the number of frame refresh. Until count
register reaches 180 (3 seconds), a ready screen showing “Get Ready Hacker” is
displayed on top of the track through the cstringdisp module. After 3 seconds, the ready
screen disappears and the “ready done” signal is set to “1”. This starts off the counting in
the lights module and eventually the game.

22

5.2.6 Timer Modules (Calvin Chung)

The timer modules are responsible for generating the timer display on the top right hand
corner of the display screen. There are two types of timers built to implement this
function. The simpler type of timer is responsible for the two decimal places to the left of
the decimal point. The module constantly keeps track of the number of frame refresh
before the display number is incremented by one. E.g. to display the unit second requires
an increment every 65 times the frame is refreshed. To accurate keep track of a tenth of a
second, another type of timer which counts the no of clock cycles instead of frame refresh
is needed. For example, to display one-tenth of a second requires an update of the display
once every 6480000 clock cycles.

5.2.7 Title Module (Calvin Chung)

The title module displays the title “Hacker’s Trail” on the top of the screen at all times.
This is done through inputting the corresponding x-y positions and characters in binary
ASCII mode to the characters display module (cstringdisp).

5.2.8 Speed Gauge (Richard Chan)

The speed gauge displays the speed in a vertical bar near the bottom left corner of the
screen. The height of the bar depends on the speed of the car. The color will also change
depending on how fast the car is going.

5.3 Circles Module (Richard Chan)

The Circles Module is basically the circles generated by the checkpoints and the current
mouse position. In edit mode, a circular blob will be generated on the screen to show
where the current mouse position is, along with the checkpoints previously set by
clicking the left and right mouse buttons. In play mode, depending on which checkpoint
is next, the Circles Module will highlight the next checkpoint on the screen to notify the
user where to go to next.

The Circles Module takes in as input which blobs cover (hcount, vcount). It then chooses,
according to the mode, what the output.

23

5.4 RGB ADD Module (Richard Chan)

The RGB ADD Module is similar to doing alpha composing on the RGB inputs, except it
assumes that the RGB values the inputs provide have been pre-multiplied by their alpha
values.

What the module does is basically summing up the red, green and blue components
separately and outputting the result. If the sum goes over 255, the values will simply be
bounded at 255.

The end result of using this module is the system we see now: with semi-transparent
menus and highlighted checkpoints.

24

6. Testing and Debugging

The modules were tested individually by simulation to ensure that they work according to
the specification integrating them into the system.

6.1 Input Components

For the modules in the input component such as the mouse module and camera module,
testing was performed by actually testing against the inputs and observing the outputs.

6.1.1 Color Detection

Camera pixels in YCrCb format are converted to RGB to be displayed on the screen. This
will display the camera pixels on the screen so that debugging could be done on the color
detection. Also, in testing the color detection, I colored the pixels that I detected as
“pixels of interest” with a different color so that I can see which pixels are recognized
with some threshold of YCrCb.

6.1.2 Hand Finder

With the pixels of interests in a different color, it becomes clear where the noise is
coming from, which false positives get picked up. In checking the center of mass
calculation, I use crosshair to indicate the center of mass calculated by my hand finder
module. Using crosshair in conjunction with the colored pixels, it makes the debugging
process significantly more straightforward.

6.2 Game Logic

Since my responsibility includes building a Graphics module that displays the car onto
the screen, which was what I created first. Even though, initially, the car is simply the
rectangular Blob provided by Lab 5 in the Pong game, having video display to guide my
debugging process definitely helped a lot.

6.2.1 Signed/Unsigned Error

Initially, the code I wrote for converting pixels into local coordinates has some
signed/unsigned conversion errors. For instance, after a value has grown so large such
that the Most Significant Bit becomes a 1, somewhere in the calculations the number gets
treated as a 2-Complement, a values much larger than expected.

25

Since that error only happens sometimes, it was quite annoying to debug, but was
eventually fixed by simply printing out each arithmetic calculation’s result onto the hex
display. (Displaying signed values onto the display will simply treat the numbers as
unsigned values, which is perfectly fine for debugging as I would simply like to see what
values are stored in the registers).

6.2.2 Sprite Resizing Error

As previously mentioned in Section 3.2, there was a strange resizing bug introduced by
the small errors matrix multiplication over irrational numbers causes. Since the errors
were so small, I did not expect them to have that much of an effect. However, it seems
that, as long as the car stay in some orientation, it will continuously resize as the error
grows exponentially, which makes sense since the localization of pixels method works by
taking the dot products with the orientation vector and its normal.

As I also briefly mentioned in Section 3.2, I attempted a few methods to solve that bug
and eventually settle on using a ROM to pre-compute all the values we need.

6.2.3 Pixel Localization Delay Error

The Pixel Localization has not always been pipelined. However, without the pipelining, I
have noticed that, quite often, a number of vertical lines would randomly appear on the
screen near the car sprite.

The VGA monitor is a great tool for debugging. When we see situations such as the one
described above, it is not difficult to guess that excessive delay could be the cause.
Considering the number of bits the module has to multiply and add to compute the dot
products, it is not surprising that the delay may go over one clock cycle, therefore causing
unexpected behaviors to occur.

In order to fix that problem, as what the current implementation is doing (as described by
Section 3.5), we can pipeline the operation into a few cycles: e.g. 1%, take the products,
2" add the products up accordingly into the dot products, then, lastly, bit-shift and return.
After the pipelining is added, no more glitches are detected, so it is safe to assume that

the bug has been fixed.

6.3 Map Module

To start off I built the incircle module to test the delay of building a circular blob around
a mouse position. The combinational delay turned out to be not that serious and
everything worked fine.

26

To test out the double buffer built with ZBT memory chips, I sent in pre-set mouse x and
mouse y values to test if a circle was created around the mouse position during edit mode
and whether the circle stayed when I switched to play mode.

The first major problem I had was that I wasn’t interfacing with the ZBT correctly. I
started my coding based on the zbt 6111 driver provided. At one point the circle showed
up when I inverted all the write enabled signals. I thought I got it working, but it turned
out that the data passed through the ZBT without being stored into it. After series of
elimination and isolating testing, I realized that I didn’t assign the default ZBT physical
data inputs/outputs in the labkit correctly.

The next step was to actually test if my design was working. At first I didn’t consider the
delay of ZBT, assuming that the delay wouldn’t cause too much of a problem except for a
few glitches. It turned out that the delay actually messed up the whole system, giving me
blank screens within milliseconds after loading the program onto the labkit.

Reconsidering the delay problems, I finally got the circle to show up on the monitor.
However, there are thin lines at fixed distances from each other. It turned out that my
read and write cycles were still 1 cycle off.

Another problem I had was that my system had a non-negligible combinational delay,
creating blurred lines on the left end of the monitor. I had been using a divider module to
generate addresses and bit numbers for each pixel serial no, but clearly it was not the best
idea. Instead, I should have just divided the serial no by a power of 2 and the division
could be done by shifting. I didn’t realize this until 10 days before check off.

After solving all these problems I used the mouse to test my integrated system. [had
always been inputting to the mouse a 65 MHz clock signal, assuming that the frequency’s
within the range of a ps2 mouse. However, every time I used the mouse, it would work
fine for the first 10 seconds, but after that the cursor started jumping and getting out of
control. After a day of testing, I decided to divide up the clock to create a 32.5MHz clock.
With this lower frequency the clock worked right away.

6.4 Integration Process

We started off integration process by combining the game logic module and map module
to test out the graphics collision detection. We tested this just by observing the output on
the monitor. Everything worked fine except we inverted the collision algorithm, but that
was a minor issue that was easily fixed. We then spent a few more days working on
rotation perfection.

The video input was the last thing we integrated into the system. While there were some
minor integration issues between the game logic module and the video input, that was
quickly resolved. One bigger problem we faced was that the combinational delay was
more than we could take on. The video input seemed to be lagging as observed from the

27

video output. After we pipelined the video input modules and the graphics output process,
the system performed much better.

With the remaining time, we improved our project by adding a user interface. Creating
different menu functions and loading images from the ROM as track and background, the
project was a lot more presentable and was ready to go.

28

CONCLUSION

In summary, we have successfully built a racing game unlike any other. We can detect
hand positions with relatively high accuracy, which in turn gives us pretty good control
over maneuvering the vehicle. The user interface is decent if not superb, with a graphical
background and track, along with semi-transparent menus.

The ZBT double buffer is working as expected without any noticeable flaw. The track
can be displayed while being drawn concurrently. The ZBT memory is successfully
sharing between the Double Buffer and the Video Input Cache.

The rotation algorithm is nearly perfect. The sprites are mapped perfectly onto the
locations of the vehicles using the pre-computed angle method. Although it was
originally intended to be able to compute angles perfectly in real-time using matrix
multiplication, the performance gain form using the ROM clearly outweighs the original
method.

There is however, clearly more room for improvement. Our system can easily be scaled
to support more than one player — if there is no bottleneck on only being able to use one
camera, since the viewing angle of a camera clearly limits the amount of people who can
simultaneously participate.

Acknowledgments
We would like to thank Professor Terman, TA Roberto Carli, as well as Jim Hom for their
unconditional help and support with our project.

REFERENCES

[1] Chris Terman, 6.111 Labkit, [Online Document], Dec. 2007, [2007
Dec 14],

Available HTTP:
http://web.mit.edu/6.111/www/f2007/index.html

29

30

APPENDIX A —Angle ROM Generator

public static void main(String[] args) {

for (int 1=0; 1<128; i++) {
double angle = ((double)i)*360*Math.P1/180/128;
double nextx =256 * Math.cos(angle);
double nexty = 256 * Math.sin(angle);

System.out.print(getBinary((int) (nextx*Math.pow(2, 16))).substring(0,16));
System.out.print(getBinary((int) (nexty*Math.pow(2, 16))).substring(0,16));
if (i<360) System.out.println(",");
}
h

private static String getBinary(int x) {
String str = Integer.toBinaryString(x);
while (str.length() < 32)
str="0" + str;
return str;

}

APPENDIX B—Verilog Code

T g

/!

// 6.111 FPGA Labkit -- Template Toplevel Module

/!

// For Labkit Revision 004

/!

/!

// Created: October 31, 2004, from revision 003 file

// Author: Nathan Ickes

/!

T g

/!

// CHANGES FOR BOARD REVISION 004

/!

// 1) Added signals for logic analyzer pods 2-4.

/1 2) Expanded "tv_in_ycrcb" to 20 bits.

// 3) Renamed "tv_out data" to "tv_out i2¢ data" and "tv_out sclk" to
/I "tv_out_i2c¢_clock".

// 4) Reversed disp_data in and disp _data out signals, so that "out" is an
/I output of the FPGA, and "in" is an input.

/!

// CHANGES FOR BOARD REVISION 003

/!

// 1) Combined flash chip enables into a single signal, flash ce b.

/!

/I CHANGES FOR BOARD REVISION 002

/!

// 1) Added SRAM clock feedback path input and output

// 2) Renamed "mousedata" to "mouse_data"

//'3) Renamed some ZBT memory signals. Parity bits are now incorporated into
/I the data bus, and the byte write enables have been combined into the
/" 4-bit ram# bwe b bus.

/I 4) Removed the "systemace clock" net, since the SystemACE clock is now
/! hardwired on the PCB to the oscillator.

/!

T 11T

/!

// Complete change history (including bug fixes)

/!

// 2006-Mar-08: Corrected default assignments to "vga out red", "vga out green"
/! and "vga out blue". (Was 10'h0, now 8'h0.)

/!

// 2005-Sep-09: Added missing default assignments to "ac97 sdata_out",

/! "disp_data_out", "analyzer[2-3] clock" and

/! "analyzer[2-3] data".

/!

// 2005-Jan-23: Reduced flash address bus to 24 bits, to match 128 Mb devices
/! actually populated on the boards. (The boards support up to

/! 256Mb devices, with 25 address lines.)

/!

// 2004-Oct-31: Adapted to new revision 004 board.

/!

// 2004-May-01: Changed "disp_data_in" to be an output, and gave it a default

31

/! value. (Previous versions of this file declared this port to

/! be an input.)

/!

/1 2004-Apr-29: Reduced SRAM address busses to 19 bits, to match 18Mb devices
/! actually populated on the boards. (The boards support up to

/! 72Mb devices, with 21 address lines.)

/!

/1 2004-Apr-29: Change history started

/!

T

module labkit (beep, audio_reset b, ac97 sdata out, ac97 sdata_in, ac97_synch,
ac97 bit_clock,

vga out red, vga out green, vga out blue, vga out sync b,
vga out blank b, vga out pixel clock, vga out hsync,
vga_out_vsync,

tv_out ycreb, tv_out reset b, tv_out clock, tv_out i2c clock,
tv_out i2c data, tv_out pal ntsc, tv_out hsync b,

tv_out _vsync b, tv_out blank b, tv_out subcar reset,
tv_in_ycrcb, tv_in data valid, tv_in_line clockl,

tv_in_line clock2, tv_in_aef, tv_in hff, tv_in aff,
tv_in_i2c_clock, tv_in i2c data, tv_in fifo read,

tv_in_fifo clock, tv_in_iso, tv_in_reset b, tv_in_clock,

ram(_data, ram0_address, ram0_adv_ld, ram0_clk, ram0 cen_b,
ram0_ce b, ram0_oe b, ram0_we_b, ram0_bwe b,

raml_data, raml_address, raml_adv_ld, raml_clk, raml cen_b,
raml_ce b,raml oe b,raml_we b, raml_bwe b,

clock feedback out, clock feedback in,

flash_data, flash_address, flash ce b, flash oe b, flash_we b,
flash_reset b, flash_sts, flash byte b,

rs232 txd, rs232 rxd, rs232 rts, rs232 cts,
mouse_clock, mouse_data, keyboard clock, keyboard data,
clock 27mhz, clockl, clock2,

disp_blank, disp_data_out, disp_clock, disp_rs, disp_ce b,
disp_reset b, disp_data_in,

button0, buttonl, button2, button3, button_enter, button_right,
button_left, button_down, button_up,

switch,
led,

userl, user2, user3, user4,

daughtercard,

systemace data, systemace address, systemace ce b,
systemace_we_b, systemace_oe_b, systemace_irq, systemace mpbrdy,

analyzerl data, analyzerl clock,
analyzer2 data, analyzer2 clock,
analyzer3 data, analyzer3 clock,
analyzer4 data, analyzer4 clock);

output beep, audio_reset b, ac97 synch, ac97 sdata out;
input ac97 bit clock, ac97 sdata_in;

output [7:0] vga_out red, vga out_green, vga out blue;
output vga out sync b, vga out blank b, vga out pixel clock,
vga out hsync, vga out vsync;

output [9:0] tv_out_ycrcb;

output tv_out reset b, tv_out clock, tv_out i2c clock, tv_out i2¢ data,
tv_out pal ntsc, tv_out hsync b, tv_out vsync b, tv_out blank b,
tv_out subcar reset;

input [19:0] tv_in_ycrcb;

input tv_in_data_valid, tv_in_line clockl, tv_in_line clock2, tv_in_aef,
tv_in_hff, tv_in_aff;

output tv_in_i2¢_clock, tv_in_fifo read, tv_in_fifo clock, tv_in_iso,
tv_in_reset b, tv_in_clock;

inout tv_in_i2c_data;

inout [35:0] ram(_data;

output [18:0] ram0_address;

output ram0_adv_Id, ram0_clk, ram0_cen_b, ram0_ce_b, ram0_oe b, ram0_we_b;
output [3:0] ram0_bwe _b;

inout [35:0] raml_data;

output [18:0] ram]1_address;

output raml_adv_1d, raml_clk, raml _cen b, raml ce b,raml oe b, raml_ we b;
output [3:0] raml_bwe _b;

input clock feedback in;
output clock feedback out;

inout [15:0] flash_data;

output [23:0] flash_address;

output flash_ce b, flash_oe b, flash_we b, flash reset b, flash _byte b;
input flash_sts;

output rs232_txd, rs232 rts;
input rs232 rxd, rs232_cts;

inout mouse_clock, mouse_data;
input keyboard clock, keyboard data;

input clock 27mhz, clockl, clock2;

output disp_blank, disp_clock, disp_rs, disp_ce b, disp_reset_b;

33

input disp data in;
output disp_data out;

input button0, buttonl, button2, button3, button_enter, button_right,
button_left, button_down, button_up;

input [7:0] switch;

output [7:0] led;

inout [31:0] userl, user2, user3, user4;
inout [43:0] daughtercard;

inout [15:0] systemace data;

output [6:0] systemace address;

output systemace ce b, systemace we b, systemace oe_b;
input systemace irq, systemace mpbrdy;

output [15:0] analyzer] data, analyzer2 data, analyzer3 data,
analyzer4 data;
output analyzerl clock, analyzer2 clock, analyzer3 clock, analyzer4 clock

T i
1

/I /O Assignments

1

T i

// Audio Input and Output
assign beep= 1'b0;

assign audio_reset b = 1'b0;
assign ac97_synch = 1'b0;
assign ac97 sdata_out = 1'b0;
// ac97 sdata_in is an input

/I VGA Output

//assign vga_out_red = 8'h0;

//assign vga_out_green = 8'h0;
//assign vga_out_blue = 8'h0;
//assign vga out_sync_b = 1'bl;
//assign vga_out_blank b = 1'bl;
//assign vga out_pixel clock = 1'b0;
//assign vga_out_hsync = 1'b0;
//assign vga_out_vsync = 1'b0;

// Video Output

assign tv_out_ycrcb = 10'h0;
assign tv_out_reset b = 1'b0;
assign tv_out_clock = 1'b0;
assign tv_out_i2¢_clock = 1'b0;
assign tv_out_i2c_data = 1'b0;
assign tv_out_pal ntsc = 1'b0;
assign tv_out_hsync_b = 1'bl;
assign tv_out_vsync_b = 1'bl;
assign tv_out_blank b=1'bl;
assign tv_out_subcar_reset = 1'b0;

)

34

// ' Video Input

/lassign tv_in_i2¢ clock = 1'b0;

assign tv_in_fifo read = 1'bl;

assign tv_in_fifo clock = 1'b0;

assign tv_in_iso = 1'bl;

//assign tv_in_reset b = 1'b0;

assign tv_in_clock = clock 27mhz;

//assign tv_in_i2c_data = 1'bZ;

//tv_in_ycreb, tv_in data valid, tv_in line clockl, tv in line clock2,
//tv_in_aef, tv_in_hff, and tv_in_aff are inputs

// SRAMs
//assign ram0_data = map_data;
//assign ram0_address = map_address;
assign ram0Q_adv_1d = 1'b0;
//assign ram0_clk = map_clk;
// assign ram0_cen_b =map_cen_b;
assign ram0_ce b = 1'b0;
assign ram0_oe b = 1'b0;
//assign ram0_we b =map_ we b;
assign ram0_bwe b = 4'h0;
//assign raml_data = 36'hZ;
//assign raml_address = 19'h0;
assign raml_adv_ld = 1'b0;
/lassign ram]1_clk = 1'b0;
//assign raml_cen_b = 1'b0;
assign raml_ce_b = 1'b0;
assign raml_oe b = 1'b0;
//assign raml_we b= 1'bl;
assign raml_bwe_b = 4'h0;
assign clock feedback out= 1'b0;
//clock_feedback in is an input

// Flash ROM

assign flash data = 16'hZ;
assign flash address = 24'h0;
assign flash ce b=1'bl;
assign flash oe b= 1Dl;
assign flash we b=1'bl;
assign flash _reset b = 1'b0;
assign flash_byte b=1'bl;
// flash_sts is an input

// RS-232 Interface

assign rs232 txd = 1'bl;

assign rs232 rts = 1'bl;

// rs232_rxd and rs232_cts are inputs

/I PS/2 Ports
// mouse_clock, mouse_data, keyboard clock, and keyboard data are inputs

// LED Displays

//assign disp_blank = 1'b1;
//assign disp_clock = 1'b0;
//assign disp_rs = 1'b0;
//assign disp_ce_b=1'bl;

35

//assign disp_reset b= 1'b0;
//assign disp_data_out = 1'b0;
// disp_data _in is an input

// Buttons, Switches, and Individual LEDs

//lab3 assign led = 8'hFF;

// buttonO, buttonl, button2, button3, button_enter, button_right,
// button_left, button_down, button_up, and switches are inputs

// User 1/0s

assign userl = 32'hZ;
assign user2 = 32'hZ;
assign user3 = 32'hZ;
assign user4 = 32'hZ;

// Daughtercard Connectors
assign daughtercard = 44'hZ;

// SystemACE Microprocessor Port

assign systemace data = 16'hZ;

assign systemace address = 7'h0;

assign systemace ce b= 1'bl;

assign systemace we b= 1'bl;

assign systemace oe b= 1Dl;

// systemace_irq and systemace mpbrdy are inputs

// Logic Analyzer

assign analyzerl data = 16'h0;
assign analyzerl clock = 1'bl;
assign analyzer2 data = 16'h0;
assign analyzer2 clock = 1'bl;
assign analyzer3 data = 16'h0;
assign analyzer3 clock = 1'bl;
assign analyzer4 data = 16'h0;
assign analyzer4 clock = 1'bl;

// use FPGA's digital clock manager to produce a

// 65MHz clock (actually 64.8MHz)

wire clock 65mhz_unbuf,clock 65mhz;

DCM velk1(.CLKIN(clock 27mhz),.CLKFX(clock 65mhz_unbuf));
// synthesis attribute CLKFX DIVIDE of vclkl is 10

// synthesis attribute CLKFX MULTIPLY of vclkl is 24

// synthesis attribute CLK_FEEDBACK of vclkl is NONE

// synthesis attribute CLKIN PERIOD of vclk1 is 37

BUFG vclk2(.O(clock 65mhz),.I(clock 65mhz_unbuf));

W ALIASING AND DEBOUNCING /1111111171711
wire clk,
play_mode, //1 ifin play mode
is_out_of track; // 1 if some part of car is out of track

assign clk = clock 65mhz;

// power-on reset generation
wire power_on_reset; // remain high for first 16 clocks

36

SRL16 reset_sr (.D(1'b0), .CLK(clock 65mhz), .Q(power on_reset),
.A0(1'b1), .A1(1'b1), .A2(1'b1), .A3(1'b1));
defparam reset_sr.INIT = 16'hFFFF;

// ENTER button is user reset
wire reset,user_reset;
debounce dbl(power_on_reset, clock 65mhz, ~button_enter, user_reset);
assign reset = user_reset | power_on_reset;

// keeping states of the game
wire finish game;
wire start_game;
wire editbtn; // stops edit mode and goes into play mode
reg edit;
debounce db2(power_on_reset, clock 65mhz, ~button3, editbtn);
// simple mux so the start button can only be used once

always @(posedge clk)
begin
if (reset)
edit <=1;
else
if (editbtn)
edit <= 0;
end

// play mode is after game is started and before game finished
assign play _mode = start game && (~finish_game);

wire [15:0] angle, height;
T VIDEO SIGNALS /1717171771H11HH1HHT]

// generate basic XVGA video signals
// (and the future counts in case there is delay for pipelining)
wire [10:0] hcount, hcount nextl, hcount next2, hcount next3;
wire [9:0] vcount, vcount_nextl, vcount_next2, vcount_next3;
wire hsync,vsync,blank;
wire hsync1,vsyncl,blank1,hsync2,vsync2,blank2,hsync3,vsync3,blank3;
xvga xvgal(clock 65mhz, hcount, vcount, hsync,vsync,blank);
xvga xvgal(clock 65mhz, hcount nextl, vcount nextl, hsyncl,vsyncl,blankl);
xvga xvga2(clock 65mhz, hcount next2, vcount next2, hsync2,vsync2,blank2);
xvga xvga3(clock 65mhz, hcount next3, vcount next3, hsync3,vsync3,blank3);
defparam xvgal OFFSET = 1;
defparam xvga2 . OFFSET = 2;
defparam xvga3.OFFSET = 3;

M MOUSE /T

wire clock 325mhz;
mouse_div mouse_divl(clock 65mhz, clock 325mhz);

wire [11:0] mouse x,mouse_y;
wire [2:0] btn_click;

ps2_mouse xy ml(clock 325mhz, reset, mouse_clock, mouse data, mouse x, mouse_y, btn_click);

Wi GAME MODULE /1111111111110

37

38

/I game module
wire [15:0] car_x, car_vy;
wire signed [15:0] car_orientation x, car_orientation y;
wire [7:0] speed;
wire is_at cptl, is_at cpt2;
wire[2:0] lapnum;
wire [15:0] simulated angle;
// using the angles as binary should be fine for now
// camera is not accurate enough to have previse turning
assign simulated angle = (angle == 0) ? 1800 :
(angle
==1)? 2700 : 900;
gamemodule gamemodulel
(clock_65mhz, reset, vsync,
simulated angle, height,
play_mode,
is out of track, is at cptl, is at cpt2,
car X, car y,car orientation X, car orientation Yy,
speed,
lapnum);

W MENU ITEMS /7100111171011
// menu items
wire ready_ip, ready_done;
wire[23:0] ready _rgb;
ready_screen ready_screenl(clock 65mhz, edit, hcount, vcount, vsync, reset, ready ip, ready rgb,
ready done);

wire [23:0] lap_rgb;
wire lap_ip;
lap disp lap disp1(clock 65mhz, reset, hcount, vcount, vsync, lapnum, lap rgb, lap_ip);

wire[23:0] lights_rgb;

wire light ip;

lights lights1(reset, clock 65mhz, ready done, vsync, hcount, veount, lights rgb, light ip,
start _game);

wire title_ip;
wire[23:0] title rgb;
title title1(clock 65mhz, reset, hcount, vcount, vsync, title_ip, title rgb);

wire timerl _ip;
wire[23:0] timer]_rgb;
timer timerl(clock 65mhz, reset, hcount, vcount, 11'd900, 10'd80, 13'd599, vsync, play mode, timerl ip,
timerl rgb);

wire timer2_ip;

wire[23:0] timer2_rgb;

timer timer2(clock 65mhz, reset, hcount, vcount, 11'd920, 10'd80, 13'd59, vsync, play_mode, timer2_ip,
timer2_rgb);

wire colon_ip;
wire[23:0] colon_rgb;
colon_display colonl(clock 65mhz, reset, hcount, vcount, 11'd940, 10'd80, colon_ip, colon_rgb);

39

wire timer_Isb_ip;

wire[23:0] timer Isb_rgb;

timer_Isb timer Isb(clock 65mhz, reset, hcount, veount, 11'd960, 10'd80, vsync, play mode,
timer Isb_ip, timer_Isb_rgb);

wire [23:0] speedpixel;
wire speed_ip;
speedgauge speedgaugel(clock 65mhz, vsync, speed, hcount, veount, speed_ip, speedpixel);

wire finish_ip;

assign finish_game = (lapnum == 7);

wire[23:0] finish_rgb;

finish_game finishl(clock 65mhz, reset,finish_game, hcount, vcount, vsync, finish_ip,
finish_rgb);

// edit =>ready done => start game => finish game

assign led[7:0] = speed[7:0];
I MAP + CIRCLES ////11111111111

wire zbt0_we;

wire inbound;

wire track;

wire[11:0] cptl_x;
wire[11:0] cptl_y;
wire[11:0] cpt2_x;
wire[11:0] cpt2_y;
wire[35:0] vram_read_data;
wire[35:0] vram_write data;
wire vram_we;

wire[18:0] vram_addr;

Map Mapl(vram_addr, viam_write_data, vram_read data, vram_we, btn_click, clock 65mhz,
reset, edit, vsync, mouse X, mouse_y, hcount, veount, track, ram0_clk, ram1_clk, ram0_we b, raml_we b,
ram0 _cen b, raml cen b, ram0 address, raml address, ram0_data, ram1 data, cptl _x, cptl y, cpt2 x,

cpt2_y);

wire cir_blob;
incircle incircle2(clock 65mhz, reset, 21'd2500, mouse _x, mouse_y, hcount, vcount, cir_blob);

wire cptlblob;
incircle cptlcircle(clock 65mhz, reset, 21'd2500, cptl_x, cptl_y, hcount, veount, cptlblob);
wire cpt2blob;
incircle cpt2circle(clock 65mhz, reset, 21'd2500, cpt2_x, cpt2_y, hcount, veount, cpt2blob);

W GRAPHICS MODULE /11111111

// GRAPHICS module
wire [23:0] pixel;
wire phsync,pvsync,pblank;
// wire is_at_cptl, is_at cpt2;

graphics graphicsl(clock 65mhz, reset,

car_X, car_y, car_orientation X, car_orientation_y,

track, cptlblob, cpt2blob,

hcount, hcount_nextl, hcount next2, hcount next3,

vcount, veount_nextl, vcount next2, vcount next3,
hsync,vsync,blank,

phsync,pvsync,pblank,pixel,

is out of track, is at cptl,is at cpt2);

wire [10:0] x_left, x_right;
wire [9:0] y left, y right;

reg old is out of track;
reg old_vsync;

I ZBT AND CAMERA //1111171111111T]

// generate pixel value from reading ZBT memory
wire [17:0] vr_pixel;
wire [18:0] vram_addrl;

vram_display vdl1(reset,clock 65mhz,hcount,vcount,vr pixel,
vram_addrl,vram read data);

/I ADV7185 NTSC decoder interface code

// adv718S5 initialization module

adv7185init adv7185(.reset(reset), .clock 27mhz(clock 27mhz),
.source(1'b0), .tv_in_reset b(tv_in_reset b),
tv_in_i2¢ clock(tv_in i2c clock),
.tv_in_i2c¢_data(tv_in_i2c¢_data));

wire [29:0] ycreb; // video data (luminance, chrominance)
wire [2:0] fvh; // sync for field, vertical, horizontal
wire dv; // datavalid

ntsc_decode decode (.clk(tv_in_line_clockl), .reset(reset),
.tv_in_ycreb(tv_in_ycrcb[19:10]),
.yercb(ycereb), f(fvh[2]),
v(fvh[1]), .h(fvh[0]), .data_valid(dv));

// code to write NTSC data to video memory
wire [18:0] ntsc_addr;

wire [35:0] ntsc_data;
wire ntsc_we;

ntsc_to_zbt n2z (clock 65mhz, tv_in_line clockl, fvh, dv, {ycrcb[19:11], ycrcb[9:1]},

ntsc_addr, ntsc_data, ntsc_we, switch[6]);

// code to write pattern to ZBT memory
reg [31:0] count;
always @(posedge clock 65mhz) count <=reset ? 0 : count + 1;

wire [18:0] vram_addr2 = count[0+18:0];
wire [35:0] vpat = (switch[4] ? {4{count[3+3:3],4'b0} }
: {4{count[3+4:4],4'b0}});

// mux selecting read/write to memory based on which write-enable is chosen

wire sw_ntsc = ~switch[7];
wire my_we =sw_ntsc ? (hcount[1:0]==2'd2) : blank;

40

41

wire [18:0] write_addr = sw_ntsc ? ntsc_addr : vram_addr2;
wire [35:0] write_data = sw_ntsc ? ntsc_data : vpat;

/" wire write_enable = sw_ntsc ? (my_we & ntsc_we) : my_we;
// assign vram_addr = write_enable ? write addr : vram_addrl;
// assign vram_we = write_enable;

assign vram_addr = my we ? write addr : vram_addrl;
assign vram_we = my_we;
assign vram_write data = write data;

// select output pixel data

/lreg [17:0] pixel;

//Iwire

b,hs,vs;

//delayN dnl(clock 65mhz,hsync,hs); // delay by 3 cycles to sync with ZBT read
//delayN dn2(clock 65mhz,vsync,vs);
//delayN dn3(clock 65mhz,blank,b);

y_right,

hand finder hand xy left(clock 65mhz, reset, hcount, vcount, vsync, vr_pixel, x_left, y left);
//blue is left

defparam hand xy left. CR._ MAX =230;

defparam hand xy left. CR_MIN = 160;

defparam hand xy left.CB. MAX = 350;

defparam hand xy left.CB_ MIN = 260;

hand_finder hand xy right(clock 65mhz, reset, hcount, vcount, vsync, vr_pixel, x_right, y right);
//red is right

defparam hand xy right CR_ MAX = 500;

defparam hand xy right.CR_MIN = 330;

defparam hand xy right.CB. MAX = 260;

defparam hand xy right.CB_MIN = 220;

/Iwire [15:0] angle, height;
hand logic hand logicl(clock 65mhz, x left, y left, x right, y right, angle, height);

wire [23:0] camera_rgb;

wire camera_ip;

camera_corner_display camera corner_displ(clock 65mhz, hcount, vcount, x_left, y left, x_right,
camera_ip, camera_rgb);

)

wire [23:0] menu_rgb;
menuModules menuModules1(clock 65mhz, ready ip, light ip, lap ip, title ip, camera ip,

timerl _ip, timer2_ip, colon_ip, timer Isb_ip, finish_ip, speed_ip,menu_rgb);

wire [23:0] circle_rgb;
circlesModule circlesModule2(clock 65mhz, edit, cir_blob, cptlblob, cpt2blob, ~lapnum[0],

circle rgb);

wire [23:0] rgb1, rgb2;
rgbadd rgbaddl(clock 65mhz, pixel, menu_rgb, rgb1);
rgbadd rgbadd2(clock 65mhz, rgbl, circle rgb, rgb2);

reg [23:0] rgb;
reg b,hs,vs;
always @(posedge clock 65mhz) begin
if (vsync && ~old_vsync)
old is out of track <=is out of track;
if (switch[1:0] == 2'b01) begin
//'1 pixel outline of visible area (white)
hs <= hsync;
VS <= vSync;
b <= blank;
rgb <= (hcount==0 | hcount==1023 | vcount==0 | vcount==767) ? {24{1'b1}} : 0;
end else if (switch[1:0] == 2'b10) begin
// color bars
hs <= hsync;
VS <= vsync;
b <=blank;
rgb <= hcount;
end else begin
// default: game
hs <= hsync;
VS <= vsync;

b <= blank;
// normal
rgb <=rgb2;
old_vsync <= vsync;
end
end

// VGA Output. In order to meet the setup and hold times of the
// AD7125, we send it ~clock 65mhz.

assign vga_out_red =rgb[23:16];

assign vga_out_green = rgb[15:8];

assign vga_out_blue = rgb[7:0];

assign vga_out sync b=1'bl; //notused

assign vga_out blank b= ~b;

assign vga_out_pixel clock = ~clock 65mhz;

assign vga_out_hsync = hs;

assign vga_out_vsync = vs;

// display for debugging purposes:
// x y dirx diry
wire[63:0] datad;
assign datad[15:0] = car_x[15:0];
assign datad[31:16] = car_y[15:0];
assign datad[47:32] = car_orientation_x;
assign datad[63:48] = car_orientation_y;
display 16hex disp(!button_left, clk,
datad,
disp_blank, disp_clock, disp_rs, disp_ce b,
disp_reset b, disp_data_out);

42

43

endmodule

module menuModules(clock 65mhz, ready ip, light ip, lap ip, title ip, camera ip, timerl_ip, timer2_ip,
colon _ip, timer Isb_ip, finish ip, speed ip,menu rgb);

input ready ip, light ip, lap ip, title ip, camera ip, timerl ip, timer2 ip, colon ip, timer Isb ip,
finish_ip, speed_ip;

input clock 65mhz;

input[23:0] ready rgb, lights rgb, lap rgb, title rgb, camera rgb, timerl rgb, timer2 rgb, colon rgb,
timer Isb_rgb, finish_rgb, speedpixel;

output[23:0] menu_rgb;

reg[23:0] menu_rgb;

always @(posedge clock 65mhz) begin
if (ready ip | light ip | lap _ip | title_ip |camera_ip |timer]l ip | timer2 ip | colon_ip | timer Isb ip |
finish_ip | speed_ip)
menu_rgb <=ready rgb | lights rgb | lap rgb | title rgb |camera rgbjtimer] rgb | timer2 rgb |
colon rgb | timer Isb rgb | finish rgb | speedpixel;
else
menu_rgb <=0;
end

endmodule

module circlesModule(clock 65mhz, edit, cir_blob, cptlblob, cpt2blob, nextcptisone, circle rgb);
input clock_65mhz, edit, cir_blob, cptlblob, cpt2blob, nextcptisone;
output[23:0] circle rgb;
reg[23:0] circle_rgb;

always @(posedge clock 65mhz) begin
if (edit)
begin
if (cir_blob)
circle rgb <= { {8{1'b1}}, {8{1'b1}}, {8{1'b0}} };

else if (cpt1blob)
circle rgb <= { {8{1'b0}}, {8{1'b0}}, {8{1'b1}} };
else if (cpt2blob)
circle rgb <= { {8{1'b1}}, {8{1'b0}}, {8{1'b0O}} };
else
circle_rgb <=0;
end
else
begin
if (nextcptisone)
if (cptlblob)
circle rgb <= { {8{1'b0}}, {8{1'b0}}, {8{1'b1}} };
else
circle_rgb <=0;
else
if (cpt2blob)
circle rgb <= { {8{1'b0}}, {8{1'b0}}, {8{1'b1}} };
else
circle_rgb <=0;
end

end

44

endmodule

/!

// File: video_decoder.v

// Date: 31-Oct-05

/I Author: J. Castro (MIT 6.111, fall 2005)

/!

// This file contains the ntsc_decode and adv7185init modules
/!

/I These modules are used to grab input NTSC video data from the RCA
// phono jack on the right hand side of the 6.111 labkit (connect
// the camera to the LOWER jack).

/!

T T

/!

/I NTSC decode - 16-bit CCIR656 decoder

// By Javier Castro

// This module takes a stream of LLC data from the adv7185

/I NTSC/PAL video decoder and generates the corresponding pixels,
// that are encoded within the stream, in YCrCb format.

// Make sure that the adv7185 is set to run in 16-bit LLC2 mode.
module ntsc_decode(clk, reset, tv_in_ycrcb, ycreb, f, v, h, data_valid);

// clk - line-locked clock (in this case, LLC1 which runs at 27Mhz)
// reset - system reset

// tv_in_ycrceb - 10-bit input from chip. should map to pins [19:10]
// yereb - 24 bit luminance and chrominance (8 bits each)

// f - field: 1 indicates an even field, 0 an odd field

//' v - vertical sync: 1 means vertical sync

//'h - horizontal sync: 1 means horizontal sync

input clk;

input reset;

input [9:0] tv_in_ycrcb; // modified for 10 bit input - should be P[19:10]
output [29:0] ycreb;

output f;

output v;

output h;

output data_valid;

// output [4:0] state;

parameter SYNC 1=0;
parameter SYNC 2=1
parameter SYNC 3 =2;
parameter SAV _fl _cb0=3;
parameter SAV fl y0=4;
parameter SAV fl crl =5;
parameter SAV fl yl=6;
parameter EAV fl=7;
parameter SAV_VBI fl =38;
parameter EAV_VBI fl =9;
parameter SAV 2 ¢cb0=10;
parameter SAV 2 y0=11;

parameter SAV 2 crl =12;
parameter SAV 2 yl =13;
parameter EAV 2 =14,
parameter SAV_VBI f2 =15;
parameter EAV VBI f2 =16;

// In the start state, the module doesn't know where
// in the sequence of pixels, it is looking.

// Once we determine where to start, the FSM goes through a normal
// sequence of SAV process YCrCb EAV... repeat

// The data stream looks as follows

// SAV_FF | SAV_00 | SAV_00 | SAV_XY | Cb0 | YO | Crl | Y1 |Cb2|Y2|...| EAV sequence

// There are two things we need to do:
//" 1. Find the two SAV blocks (stands for Start Active Video perhaps?)
/I 2. Decode the subsequent data

reg [4:0] current_state = 5'h00;

reg [9:0] y = 10'h000; // luminance

reg [9:0] cr = 10'h000; // chrominance

reg [9:0] cb = 10'h000; // more chrominance

45

assign state = current_state;

always @ (posedge clk)
begin
if (reset)
begin

end
else
begin
// these states don't do much except allow us to know where we are in the stream.
// whenever the synchronization code is seen, go back to the sync_state before
// transitioning to the new state
case (current_state)
SYNC 1: current_state <= (tv_in_ycrcb == 10'h000) ? SYNC 2 : SYNC 1;
SYNC 2: current_state <= (tv_in_ycrcb == 10'h000) ? SYNC 3 : SYNC 1;
SYNC 3: current_state <= (tv_in_ycrcb == 10'h200) ? SAV_fl ¢cb0 :
(tv_in_ycrcb == 10'h274) ? EAV fl:
(tv_in_ycrcb == 10'h2ac) ? SAV_VBI f1 :
(tv_in_ycrcb == 10'h2d8) ? EAV_VBI f1 :
(tv_in_ycrcb == 10'h31c) ? SAV_f2 cb0:
(tv_in_ycrcb == 10'h368) ? EAV 12 :
(tv_in_ycrcb == 10'h3b0) ? SAV_VBI 2 :
(tv_in_ycrcb == 10'h3c4) ? EAV_VBI 2 : SYNC 1;

SAV_fl cb0: current_state <= (tv_in_ycrcb == 10'h3{f) ? SYNC 1 : SAV_fl y0;
SAV_f1 y0: current_state <= (tv_in_ycrcb == 10'h3ff) ? SYNC 1 : SAV _fl crl;
SAV _fl _crl: current_state <= (tv_in_ycrcb == 10'h3{f) ? SYNC 1 : SAV _fl yl;
SAV_fl _yl: current_state <= (tv_in_ycrcb == 10'h3{f) ? SYNC 1 : SAV_fl cb0;

SAV 2 ¢b0: current_state <= (tv_in_ycrcb == 10'h3ff) ? SYNC 1:SAV 2 y0;
SAV 2 y0: current_state <= (tv_in_ycrcb == 10'h3ff) ? SYNC 1:SAV 2 crl;
SAV_f2 crl: current_state <= (tv_in_ycrcb == 10'h3ff) ? SYNC 1:SAV 2 yl;
SAV _f2 yl: current state <= (tv_in_ycrcb == 10'h3ff) ? SYNC 1 : SAV f2 cb0;

// These states are here in the event that we want to cover these signals

// in the future. For now, they just send the state machine back to SYNC 1
EAV fl: current state <= SYNC 1;

SAV_VBI fl: current state <= SYNC 1;

EAV_VBI fl: current_state <= SYNC 1;

EAV_f2: current_state <= SYNC 1;

SAV_VBI f2: current_state <= SYNC 1;

EAV_VBI f2: current_state <= SYNC 1;

endcase
end
end // always @ (posedge clk)

// implement our decoding mechanism

wire y_enable;
wire cr_enable;
wire cb_enable;

/' if y is coming in, enable the register

// likewise for cr and cb

assign y_enable = (current_state == SAV_fl y0) ||
(current_state == SAV fl yl) ||
(current_state == SAV 12 y0) ||
(current_state == SAV_f2 yl);

assign cr_enable = (current_state == SAV _fl crl) ||
(current_state == SAV_f2 crl);

assign cb_enable = (current_state == SAV_fl cb0) ||
(current_state == SAV_f2 cb0);

/I f, v, and h only go high when active
assign {v,h} = (current_state == SYNC 3) ? tv_in_ycrcb[7:6] : 2'b00;

// data is valid when we have all three values: y, cr, cb
assign data_valid =y enable;
assign ycrcb = {y,cr,cb};

reg f=0;

always @ (posedge clk)
begin
y <=y enable ? tv_in_ycrcb : y;
cr <= cr_enable ? tv_in_ycreb : cr;
cb <=cb_enable ? tv_in_ycrcb : cb;
f <= (current_state == SYNC 3) ? tv_in_ycrcb[8] : f;
end

endmodule

46

47

T]

x 6.111 FPGA Labkit -- ADV7185 Video Decoder Configuration Init
x Created:

// Author: Nathan Ickes
Z///

T
// Register 0
T

‘define INPUT _SELECT 4'h0

/1 0: CVBS on AIN1 (composite video in)

//'7:'Y on AIN2, C on AINS (s-video in)

/I (These are the only configurations supported by the 6.111 labkit hardware)
‘define INPUT MODE 4'h0

/1 0: Autodetect: NTSC or PAL (BGHID), w/o pedestal

//'1: Autodetect: NTSC or PAL (BGHID), w/pedestal

/1 2: Autodetect: NTSC or PAL (N), w/o pedestal

/1 3: Autodetect: NTSC or PAL (N), w/pedestal

/I 4: NTSC w/o pedestal

//'5: NTSC w/pedestal

/1 6: NTSC 4.43 w/o pedestal

// 7: NTSC 4.43 w/pedestal

/I 8: PAL BGHID w/o pedestal

/1 9: PAL N w/pedestal

/l A: PAL M w/o pedestal

// B: PAL M w/pedestal

/I C: PAL combination N

// D: PAL combination N w/pedestal

// E-F: [Not valid]

“define ADV7185 REGISTER 0 { INPUT MODE, 'INPUT SELECT}

T
// Register 1
T T

‘define VIDEO QUALITY 2'h0
// 0: Broadcast quality
//'1: TV quality
// 2: VCR quality
// 3: Surveillance quality
“define SQUARE_PIXEL IN MODE 1'b0
// 0: Normal mode
//'1: Square pixel mode
‘define DIFFERENTIAL INPUT 1'b0
/1 0: Single-ended inputs
// 1: Difterential inputs
‘define FOUR_TIMES SAMPLING 1'b0
/1 0: Standard sampling rate
/I 1: 4x sampling rate (NTSC only)
‘define BETACAM 1'60
/1 0: Standard video input

// 1: Betacam video input

‘define AUTOMATIC STARTUP_ENABLE 1'bl
/1 0: Change of input triggers reacquire
//'1: Change of input does not trigger reacquire

‘define ADV7185 REGISTER 1 {TAUTOMATIC STARTUP_ENABLE, 1'b0, ' BETACAM,
'FOUR_TIMES SAMPLING, 'DIFFERENTIAL INPUT, '‘SQUARE PIXEL IN MODE,
"VIDEO QUALITY}

T
// Register 2
T

‘define Y PEAKING FILTER 3'h4
/1 0: Composite = 4.5dB, s-video = 9.25dB
//'1: Composite = 4.5dB, s-video = 9.25dB
/I 2: Composite = 4.5dB, s-video = 5.75dB
// 3: Composite = 1.25dB, s-video = 3.3dB
/I 4: Composite = 0.0dB, s-video = 0.0dB
//'5: Composite = -1.25dB, s-video = -3.0dB
/! 6: Composite = -1.75dB, s-video = -8.0dB
/I T: Composite = -3.0dB, s-video =-8.0dB

‘define CORING 2'h0
/1 0: No coring
/I 1: Truncate if Y < black+8
// 2: Truncate if Y < black+16
/1 3: Truncate if Y < black+32

‘define ADV7185 REGISTER 2 {3'b000, "CORING, 'Y PEAKING FILTER}

T T
// Register 3
s

‘define INTERFACE SELECT 2'h0
/1 0: Philips-compatible
//'1: Broktree API A-compatible
/1 2: Broktree API B-compatible
/1 3: [Not valid]
‘define OUTPUT FORMAT 4'h0
// 0: 10-bit @ LLC, 4:2:2 CCIR656
//'1: 20-bit @ LLC, 4:2:2 CCIR656
//2: 16-bit @ LLC, 4:2:2 CCIR656
// 3: 8-bit @ LLC, 4:2:2 CCIR656
/l'4: 12-bit @ LLC, 4:1:1
// 5-F: [Not valid]
// (Note that the 6.111 labkit hardware provides only a 10-bit interface to
// the ADV7185.)
‘define TRISTATE_OUTPUT_ DRIVERS 1'b0
/1 0: Drivers tristated when ~OE is high
// 1: Drivers always tristated
‘define VBI_ ENABLE 1'b0
/1 0: Decode lines during vertical blanking interval
/I 1: Decode only active video regions

48

‘define ADV7185 REGISTER 3 {'VBI ENABLE, 'TRISTATE_OUTPUT DRIVERS,
‘OUTPUT _FORMAT, 'INTERFACE _SELECT}

T T
// Register 4
T T

‘define OUTPUT DATA RANGE 1'b0
/1 0: Output values restricted to CCIR-compliant range
//'1: Use full output range

‘define BT656_TYPE 1'b0
/1 0: BT656-3-compatible
//'1: BT656-4-compatible

‘define ADV7185 REGISTER 4 {'BT656_TYPE, 3'b000, 3'b110, 'OUTPUT _DATA RANGE}

T T
// Register 5
T

‘define GENERAL PURPOSE OUTPUTS 4'b0000
‘define GPO 0 1 ENABLE 1'b0
/1 0: General purpose outputs 0 and 1 tristated
/I '1: General purpose outputs 0 and 1 enabled
‘define GPO 2 3 ENABLE 1'b0
/1 0: General purpose outputs 2 and 3 tristated
/I'1: General purpose outputs 2 and 3 enabled
‘define BLANK CHROMA IN VBI 1'bl
// 0: Chroma decoded and output during vertical blanking
//'1: Chroma blanked during vertical blanking
‘define HLOCK ENABLE 1'b0
// 0: GPO 0 is a general purpose output
//'1: GPO 0 shows HLOCK status

“define ADV7185 REGISTER 5 {{HLOCK_ENABLE, 'BLANK_CHROMA IN_VBI,
"GPO 2 3 ENABLE, 'GPO 0 | ENABLE, GENERAL PURPOSE OUTPUTS}

T T
// Register 7
T

‘define FIFO_FLAG_MARGIN 5'h10
// Sets the locations where FIFO almost-full and almost-empty flags are set
‘define FIFO_RESET 1'b0

/1 0: Normal operation

/I 1: Reset FIFO. This bit is automatically cleared
“define AUTOMATIC_FIFO_RESET 1'b0

// 0: No automatic reset

// 1: FIFO is autmatically reset at the end of each video field
‘define FIFO_FLAG SELF TIME 1'bl

/1 0: FIFO flags are synchronized to CLKIN

/I 1: FIFO flags are synchronized to internal 27MHz clock

“define ADV7185_REGISTER 7 { FIFO_FLAG_SELF_TIME, 'AUTOMATIC_FIFO_RESET,
"FIFO_RESET, 'FIFO_ FLAG_MARGIN}

T g

// Register 8
T g

*define INPUT_CONTRAST ADJUST 8'h80
‘define ADV7185 REGISTER 8 {'INPUT_CONTRAST ADJUST}

T
// Register 9
T

‘define INPUT _SATURATION ADJUST 8'h8C
‘define ADV7185 REGISTER 9 {'INPUT SATURATION_ ADJUST}

T
// Register A
T T

“define INPUT_BRIGHTNESS_ADJUST 8'h00
“define ADV7185 REGISTER_A { INPUT BRIGHTNESS ADJUST}

s
// Register B
T T

*define INPUT_HUE_ADJUST 8'h00
‘define ADV7185_REGISTER B {'INPUT_HUE_ADJUST}

T
// Register C
T

‘define DEFAULT VALUE ENABLE 1'b0
/1 0: Use programmed Y, Cr, and Cb values
// 1: Use default values
‘define DEFAULT VALUE AUTOMATIC ENABLE 1'b0
/1 0: Use programmed Y, Cr, and Cb values
//'1: Use default values if lock is lost
‘define DEFAULT_Y_VALUE 6'h0C
// Default Y value

“define ADV7185_REGISTER_C {'DEFAULT Y_VALUE,
‘DEFAULT_VALUE_AUTOMATIC_ENABLE, 'DEFAULT VALUE_ENABLE}

T T
// Register D
T T

‘define DEFAULT CR_VALUE 4'h8
/I Most-significant four bits of default Cr value
‘define DEFAULT CB_VALUE 4'h8

50

51

// Most-significant four bits of default Cb value
‘define ADV7185 REGISTER D {{DEFAULT CB VALUE, 'DEFAULT CR VALUE}
T g

/I Register E
T T

‘define TEMPORAL DECIMATION ENABLE 150
// 0: Disable
// 1: Enable

‘define TEMPORAL DECIMATION CONTROL 2'h0

/1 0: Supress frames, start with even field
/I 1: Supress frames, start with odd field
/1 2: Supress even fields only
/' 3: Supress odd fields only
‘define TEMPORAL DECIMATION RATE 4'h0
// 0-F: Number of fields/frames to skip

‘define ADV7185 REGISTER E {1'b0, TEMPORAL DECIMATION RATE,
"TEMPORAL DECIMATION CONTROL, 'TEMPORAL DECIMATION ENABLE}

T
// Register F
T

‘define POWER _SAVE CONTROL 2'h0
// 0: Full operation
//'1: CVBS only
// 2: Digital only
// 3: Power save mode
‘define POWER DOWN SOURCE PRIORITY 1'b0
// 0: Power-down pin has priority
// 1: Power-down control bit has priority
‘define POWER _DOWN_ REFERENCE 1'b0
/I 0: Reference is functional
/I 1: Reference is powered down
“define POWER_DOWN_LLC_GENERATOR 1'60
/1 0: LLC generator is functional
//'1: LLC generator is powered down
‘define POWER_DOWN_CHIP 1'b0
// 0: Chip is functional
//'1: Input pads disabled and clocks stopped
‘define TIMING_REACQUIRE 1'b0
/1 0: Normal operation
// 1: Reacquire video signal (bit will automatically reset)
‘define RESET CHIP 1'b0
/1 0: Normal operation
/I 1: Reset digital core and 12C interface (bit will automatically reset)

“define ADV7185 REGISTER F {'RESET CHIP, 'TIMING REACQUIRE, 'POWER DOWN_CHIP,
'POWER_DOWN_LLC GENERATOR, 'POWER _DOWN_ REFERENCE,
'POWER_DOWN SOURCE PRIORITY, 'POWER SAVE CONTROL}

T T
// Register 33

T

‘define PEAK_WHITE UPDATE 1'bl
// 0: Update gain once per line
// 1: Update gain once per field
‘define AVERAGE_ BIRIGHTNESS LINES 1'bl
// 0: Use lines 33 to 310
// 1: Use lines 33 to 270
‘define MAXIMUM_IRE 3'h0
// 0: PAL: 133, NTSC: 122
// 1: PAL: 125, NTSC: 115
//2: PAL: 120, NTSC: 110
//3: PAL: 115, NTSC: 105
// 4: PAL: 110, NTSC: 100
/1 5: PAL: 105, NTSC: 100
// 6-7: PAL: 100, NTSC: 100
‘define COLOR_KILL 1'bl
// 0: Disable color kill
// 1: Enable color kill

“define ADV7185 REGISTER 33 {1'bl, 'COLOR KILL, 1'bl, MAXIMUM IRE,
"AVERAGE BIRIGHTNESS LINES, 'PEAK WHITE UPDATE}

*define ADV7185_REGISTER_10 8'h00
*define ADV7185_REGISTER 11 8'h00
*define ADV7185_REGISTER_12 8'h00
‘define ADV7185_REGISTER_13 8'h45
‘define ADV7185_REGISTER_14 8'h18
‘define ADV7185_REGISTER_15 8'h60
‘define ADV7185_REGISTER_16 8'h00
‘define ADV7185_REGISTER_17 8'h01
‘define ADV7185_REGISTER_18 8'h00
‘define ADV7185_REGISTER 19 8'h10
*define ADV7185 REGISTER_ 1A 8'h10
*define ADV7185 REGISTER_1B 8'hF0
‘define ADV7185_REGISTER_1C 8'h16
*define ADV7185 REGISTER_1D 8'h01
‘define ADV7185_REGISTER_1E 8'h00
‘define ADV7185_REGISTER_IF 8'h3D
‘define ADV7185_REGISTER_20 8'hDO0
‘define ADV7185_REGISTER 21 8'h09
‘define ADV7185_REGISTER_22 8'h8C
‘define ADV7185_REGISTER_23 8'hE2
*define ADV7185_REGISTER 24 8hIF
‘define ADV7185_REGISTER 25 8'h07
‘define ADV7185_REGISTER 26 8'hC2
‘define ADV7185_REGISTER 27 8'h58
‘define ADV7185_REGISTER 28 8h3C
‘define ADV7185_REGISTER_29 8'h00
‘define ADV7185_REGISTER_2A 8'h00
‘define ADV7185_REGISTER_2B 8'hA0
‘define ADV7185_REGISTER_2C 8'hCE
‘define ADV7185_REGISTER_2D 8'hF0
‘define ADV7185_REGISTER_2E 8'h00
‘define ADV7185_REGISTER_2F 8'hF0
‘define ADV7185 REGISTER_30 8'h00

“define ADV7185_REGISTER 31 8'h70
“define ADV7185_REGISTER 32 8'h00
“define ADV7185_REGISTER 34 8'hOF
“define ADV7185 REGISTER 35 8'h01
“define ADV7185 REGISTER 36 8'h00
“define ADV7185 REGISTER 37 8'h00
“define ADV7185 REGISTER 38 8'h00
“define ADV7185 REGISTER 39 8'h00
“define ADV7185 REGISTER 3A 8'h00
“define ADV7185_REGISTER 3B 8'h00

‘define ADV7185_REGISTER 44 8'h41
*define ADV7185_REGISTER 45 8'hBB

“define ADV7185_REGISTER_F1 8'hEF
“define ADV7185_REGISTER_F2 8'h80

module adv7185init (reset, clock 27mhz, source, tv_in reset b,
tv_in i2c clock, tv_in i2c data);

input reset;

input clock 27mbhz;

output tv_in_reset_b; // Reset signal to ADV7185
output tv_in_i2¢_clock; // 12C clock output to ADV7185
output tv_in_i2c¢_data; // 12C data line to ADV7185
input source; // 0: composite, 1: s-video

initial begin
$display("ADV7185 Initialization values:");
$display(" Register 0: 0x%X", 'ADV7185 REGISTER 0);
$display(" Register 1: 0x%X", "ADV7185 REGISTER 1);
$display(" Register 2: 0x%X", 'ADV7185 REGISTER 2);
$display(" Register 3: 0x%X", 'ADV7185 REGISTER 3);
$display(" Register 4: 0x%X", 'ADV7185 REGISTER 4);
$display(" Register 5: 0x%X", 'ADV7185 REGISTER 5);
$display(" Register 7: 0x%X", 'ADV7185 REGISTER 7);
$display(" Register 8: 0x%X", 'ADV7185 REGISTER 8);
$display(" Register 9: 0x%X", 'ADV7185 REGISTER 9);
$display(" Register A: 0x%X", 'ADV7185 REGISTER A);
$display(" Register B: 0x%X", "ADV7185 REGISTER B);
$display(" Register C: 0x%X", "ADV7185 REGISTER C);
$display(" Register D: 0x%X", "ADV7185 REGISTER D);
$display(" Register E: 0x%X", "ADV7185 REGISTER E);
$display(" Register F: 0x%X", "ADV7185 REGISTER F);
$display(" Register 33: 0x%X", "ADV7185_REGISTER 33);

end

//
// Generate a 1MHz for the 12C driver (resulting 12C clock rate is 250kHz)
!/

reg [7:0] clk_div_count, reset _count;
reg clock_slow;
wire reset_slow;

54

initial
begin
clk_div_count <= 8'h00;
// synthesis attribute init of clk_div_count is "00";
clock slow <= 1'b0;
// synthesis attribute init of clock slow is "0";
end

always @(posedge clock 27mhz)
if (clk_div_count == 26)
begin
clock slow <= ~clock_slow;
clk_div_count <=0;
end
else
clk div_count <=clk div_count+l;

always @(posedge clock 27mhz)
if (reset)
reset_count <= 100;
else
reset_count <= (reset_count==0) ? 0 : reset_count-1;

assign reset_slow = reset_count !=0;

/!
// 12C driver
I

reg load;
reg [7:0] data;
wire ack, idle;

i2¢ i2¢(.reset(reset_slow), .clockdx(clock slow), .data(data), .load(load),
.ack(ack), .idle(idle), .scl(tv_in_i2c_clock),
.sda(tv_in_i2¢_data));

//
// State machine
/!

reg [7:0] state;
reg tv_in_reset b;
reg old_source;

always @(posedge clock slow)
if (reset_slow)
begin
state <= 0;
load <=0;
tv_in_reset b <= 0;
old_source <= 0;
end
else
case (state)
8'h00:

begin
// Assert reset
load <= 1'b0;
tv_in_reset b <= 1'b0;
if (lack)
state <= state+1;
end
8'h01:
state <= state+1;
8'h02:
begin
// Release reset
tv_in_reset b <= 1'bl;
state <= state+1;
end
8'h03:
begin
// Send ADV7185 address
data <= 8'h8A;
load <= 1'b1;
if (ack)
state <= state+1;
end
8'h04:
begin
// Send subaddress of first register
data <= 8'h00;
if (ack)
state <= state+1;
end
8'h05:
begin
// ' Write to register 0
data <="ADV7185 REGISTER 0 | {5'h00, {3 {source}}};
if (ack)
state <= state+1;
end
8'h06:
begin
/I Write to register 1
data <="ADV7185 REGISTER 1;
if (ack)
state <= state+1;
end
8'h07:
begin
// ' Write to register 2
data <="ADV7185 REGISTER 2;
if (ack)
state <= state+1;
end
8'h08:
begin
// ' Write to register 3
data <="ADV7185 REGISTER 3;
if (ack)

55

state <= state+1;
end
8'h09:
begin
// ' Write to register 4
data<="ADV7185 REGISTER 4;
if (ack)
state <= state+1;
end
8'h0A:
begin
// Write to register 5
data <="ADV7185 REGISTER 5;
if (ack)
state <= state+1;
end
8'h0B:
begin
// ' Write to register 6

data <= 8'h00; // Reserved register, write all zeros

if (ack)
state <= statet+1;
end
8'h0C:
begin
// ' Write to register 7
data <="ADV7185 REGISTER 7;
if (ack)
state <= state+1;
end
8'h0D:
begin
// ' Write to register 8
data <="ADV7185 REGISTER 8;
if (ack)
state <= statet+1;
end
8'hOE:
begin
// Write to register 9
data <="ADV7185 REGISTER 9;
if (ack)
state <= state+1;
end
8'hOF: begin
// ' Write to register A
data <="ADV7185 REGISTER_A;
if (ack)
state <= statet+1;
end
8'h10:
begin
// ' Write to register B
data <= "ADV7185_REGISTER B;
if (ack)
state <= statet1;

56

end
8'hll:
begin
// Write to register C
data <="ADV7185 REGISTER C;
if (ack)
state <= state+1;
end
8'h12:
begin
/I Write to register D
data <="ADV7185 REGISTER D;
if (ack)
state <= state+1;
end
8'h13:
begin
// ' Write to register E
data<="ADV7185 REGISTER E;
if (ack)
state <= state+1;
end
8'h14:
begin
// Write to register F
data <= "ADV7185 REGISTER F,
if (ack)
state <= state+1;
end
8'hl15:
begin
// Wait for 12C transmitter to finish
load <= 1'b0;
if (idle)
state <= state+1;
end
8'h16:
begin
// Write address
data <= 8'h8A;
load <= 1'b1;
if (ack)
state <= state+1;
end
8'h17:
begin
data <= 8'h33;
if (ack)
state <= statet+1;
end
8'h18:
begin
data <= "ADV7185 REGISTER 33;
if (ack)
state <= state+1;
end

57

8'h19:
begin
load <= 1'b0;
if (idle)
state <= state+1;
end

8'h1A: begin
data <= 8'h8A;
load <= 1'd1;
if (ack)
state <= state+1;
end
8'h1B:
begin
data <= 8'h33;
if (ack)
state <= state+1;
end
8'h1C:
begin
load <= 1'b0;
if (idle)
state <= statet+1;
end
8'h1D:
begin
load <= 1'b1;
data <= 8'h8B;
if (ack)
state <= state+1;
end
8'hlE:
begin
data <= 8'hFF;
if (ack)
state <= state+1;
end
8'hl1F:
begin
load <= 1'b0;
if (idle)
state <= state+1;
end
8'h20:
begin
// 1dle
if (old_source != source) state <= state+1;
old_source <= source;
end
8'h21: begin
// Send ADV7185 address
data <= 8'h8A;
load <= 1'b1;
if (ack) state <= state+1;
end

8'h22: begin
/I Send subaddress of register 0
data <= 8'h00;
if (ack) state <= state+1;

end

8'h23: begin
// ' Write to register 0
data <= "ADV7185 REGISTER 0 | {5'h00, {3 {source}}};
if (ack) state <= state+1;

end

8'h24: begin
// Wait for 12C transmitter to finish
load <= 1'b0;
if (idle) state <= 8'h20;

end

endcase

endmodule
// 12¢ module for use with the ADV7185
module i2¢ (reset, clock4x, data, load, idle, ack, scl, sda);

input reset;
input clock4x;
input [7:0] data;
input load;
output ack;
output idle;
output scl;
output sda;

reg [7:0] ldata;

reg ack, idle;

reg scl;

reg sdai;

reg [7:0] state;

assign sda = sdai ? 1'bZ : 1'b0;

always @(posedge clock4x)

if (reset)
begin
state <= 0;
ack <=0;
end
else

case (state)
8'h00: // idle
begin

scl <= 1'b1;
sdai <= 1'bl;
ack <= 1'b0;
idle <= 1'bl;
if (load)

59

begin
Idata <= data;
ack <= 1'bl;
state <= state+1;
end
end
8'h01: // Start
begin
ack <= 1'b0;
idle <= 1'b0;
sdai <= 1'b0;
state <= state+1;
end
8'h02:
begin
scl <= 1'b0;
state <= state+1;
end
8'h03: // Send bit 7
begin
ack <= 1'b0;
sdai <= ldata[7];
state <= state+1;
end
8'h04:
begin
scl <= 1'b1;
state <= state+1;
end
8'h05:
begin
state <= state+1;
end
8'h06:
begin
scl <= 1'b0;
state <= state+1;
end
8'h07:
begin
sdai <= ldata[6];
state <= state+1;
end
8'h08:
begin
scl <= 1'b1;
state <= state+1;
end
8'h09:
begin
state <= state+1;
end
8'h0A:
begin
scl <= 1'b0;
state <= state+1;

60

end
8'h0B:
begin
sdai <= Idata[5];
state <= state+1;
end
8'h0C:
begin
scl <= 1'b1;
state <= state+1;
end
8'h0D:
begin
state <= state+1;
end
8'hOE:
begin
scl <= 1'b0;
state <= state+1;
end
8'hOF:
begin
sdai <= ldata[4];
state <= state+1;
end
8'h10:
begin
scl <= 1'b1;
state <= state+1;
end
8'hll:
begin
state <= state+1;
end
8'h12:
begin
scl <= 1'b0;
state <= state+1;
end
8'h13:
begin
sdai <= ldata[3];
state <= state+1;
end
8'h14:
begin
scl <= 1'b1;
state <= state+1;
end
8'hl15:
begin
state <= state+1;
end
8'h16:
begin
scl <= 1'b0;

61

state <= state+1;
end
8'h17:
begin
sdai <= Idata[2];
state <= state+1;
end
8'h18:
begin
scl <=1D1;
state <= state+1;
end
8'h19:
begin
state <= state+1;
end
8'hl1A:
begin
scl <= 1'b0;
state <= state+1;
end
8'h1B:
begin
sdai <= ldata[1];
state <= state+1;
end
8'h1C:
begin
scl <= 1'b1;
state <= state+1;
end
8'h1D:
begin
state <= state+1;
end
8'h1E:
begin
scl <= 1'b0;
state <= state+1;
end
8'h1F:
begin
sdai <= ldata[0];
state <= state+1;
end
8'h20:
begin
scl <= 1'b1;
state <= state+1;
end
8'h21:
begin
state <= state+1;
end
8'h22:
begin

62

scl <= 1'b0;
state <= state+1;

end
8'h23: // Acknowledge bit
begin
state <= state+1;
end
8'h24:
begin
scl <=1D1;
state <= state+1;
end
8'h25:
begin
state <= state+1;
end
8'h26:
begin
scl <= 1'b0;
if (load)
begin
ldata <= data;
ack <= 1'bl;
state <= 3;
end
else
state <= state+1;
end
8'h27:
begin
sdai <= 1'b0;
state <= state+1;
end
8'h28:
begin
scl <= 1'b1;
state <= state+1;
end
8'h29:
begin
sdai <= 1'bl;
state <= 0;
end
endcase
endmodule
/!

/l File: ntsc2zbt.v

// Date: 27-Nov-05

// Author: 1. Chuang <ichuang@mit.edu>

//

// Example for MIT 6.111 labkit showing how to prepare NTSC data
/I (from Javier's decoder) to be loaded into the ZBT RAM for video
// display.

/

// The ZBT memory is 36 bits wide; we only use 32 bits of this, to
// store 4 bytes of black-and-white intensity data from the NTSC
// video input.

e,
// Prepare data and address values to fill ZBT memory with NTSC data

module ntsc_to_zbt(clk, velk, fvh, dv, din, ntsc_addr, ntsc_data, ntsc_we, sw);

input clk; // system clock

input vclk; //video clock from camera
input [2:0] fvh;

input dv;

input [17:0] din; //Passing in 18 bits of data
output [18:0] ntsc_addr;

output [35:0] ntsc_data;

output ntsc_we; // write enable for NTSC data

input sw; // switch which determines mode (for debugging)
parameter COL_START = 10'd30;

parameter ROW_START = 10'd30;

// here put the luminance data from the ntsc decoder into the ram
// this is for 1024 x 768 XGA display

reg [9:0] col =0;

reg [9:0] row = 0;

reg [17:0] vdata = 0;

reg vwe;

reg old dv;

reg old frame; // frames are even / odd interlaced
reg even_odd; // decode interlaced frame to this wire

wire frame = fvh[2];
wire frame edge = frame & ~old_frame;

always @ (posedge vclk) /LLCI is reference
begin
old dv <=dv;
vwe <= dv && !fvh[2] & ~old_dv; // if data valid, write it
old_frame <= frame;
even_odd = frame edge ? ~even_odd : even_odd;

if (1fvh[2])
begin
col <= fvh[0] ? COL_START :
(Mfvh[2] && 'fvh[1] && dv && (col <1024)) ? col + 1 : col;
row <= fvh[1] ? ROW_START :
("fvh[2] && fvh[0] && (row < 768)) ? row + 1 : row;
vdata <= (dv && !fvh[2]) ? din : vdata;
end
end

// synchronize with system clock

reg [9:0] x[1:0],y[1:0];

64

reg [17:0] data[1:0];
reg we[l:0];
reg eo[1:0];

always @(posedge clk)

begin
{x[11:x[0]} <= {x[0].col};
ty[11.y[01} <= {y[0],row};
{data[1],data[0]} <= {data[0],vdata};
{we[1],we[0]} <= {we[0],vwe};
{eo[1],e0[0]} <= {eo[0],even _odd};

end

// edge detection on write enable signal

reg old we;
wire we_edge = we[1] & ~old_we;
always @(posedge clk) old_we <= we[1];

// shift each set of four bytes into a large register for the ZBT

reg [35:0] mydata;
always @(posedge clk)
if (we_edge)
mydata <= { mydata[17:0], data[1] };

// compute address to store data in
wire [18:0] myaddr = {y[1][8:0], eo[1], x[1][9:1]};

// alternate (256x192) image data and address
wire [35:0] mydata2 = {data[1],data[1],data[1],data[1]};
wire [18:0] myaddr2 = {1'b0, y[1][8:0], eo[1], x[1][7:0]};

// modification is made here!
// update the output address and data only when TWO BYTES ARE READY

reg [18:0] ntsc_addr;
reg [35:0] ntsc_data;
wire ntsc_we =sw ? we_edge : (we_edge & (x[1][0]==1'b0));

always @(posedge clk)
if (ntsc_we)
begin
ntsc_addr <= sw ? myaddr2 : myaddr; // normal and expanded modes
ntsc_data <= sw ? {4'b0,mydata2} : {4'b0,mydata};
end

endmodule // ntsc_to_zbt

“timescale Ins / 1ps
T
// Company:

// Engineer:

//

// Create Date: 18:13:50 12/02/2007

65

// Design Name:

// Module Name: hand_sprite
// Project Name:

// Target Devices:

// Tool versions:

// Description:

/!

// Dependencies:

/!

// Revision:

// Revision 0.01 - File Created
// Additional Comments:

/!
T]

// hand_finder module: given the hcount, vcount, and the pixel in, it outputs the
/! center of mass of the hand pixels as (x, y) value
module hand_finder(clk, reset, hcount,vcount, vsync, pixel in, X out, y out);
//using parameters here to specify the maximum cr and cb and minimum cr and cb thresholds
//that we want to use to detect the hand pixels
//this allows us to create instances of the same class to detect different colors by simply
//specifying the parameter values by calling defparams

//max of cr

parameter CR. MAX =512;
//min of cr

parameter CR_MIN = 0;
//max of cb

parameter CB. MAX = 512;
//min of cb

parameter CB_ MIN = 0;

input vsync;

input clk;

input [10:0] hcount;
input [9:0] vcount;
input [17:0] pixel in;
output [10:0] x_out;
output [9:0] y_out;
input reset;

//initializes the variables

reg [29:0] hsum, vsum, last_hsum, last_vsum;
reg [18:0] counter;

reg [18:0] last_counter;

reg old_vsync;

wire [11:0] cr, cb;

assign cr = {3'b0, pixel_in[17:9]};

assign cb = {3'b0, pixel in[8:0]};

wire rfd_v, rfd_h;
wire [18:0]r_v, r_h;
wire [29:0] X, y;

reg [10:0] last_x;
reg [9:0] last_y;

66

67

//creating an instance of the divider module to compute the vertical center of mass
/ly =last_vsum / last_counter

divider vdiv(clk, last vsum, last counter, y, r v, rdf v);

//creating an instance of the divider module to compute the horizontal center of mass
//x = last_hsum / last counter

divider hdiv(clk, last hsum, last counter, x, r_h, rdf h);

assign x_out = last_x;
assign'y_out = last y;

always @ (posedge clk) begin
old_vsync <= vsync;
if (reset)
begin
//initializing the variables to 0
last_counter <= 0;
last_hsum <= 0;
last_vsum <= 0;
last x <=0;
last y <=0;
counter <= 0;
hsum <= 0;
vsum <= (;
end
//if it's on the screen and the cr and cb values for the pixel satisfies the cr and cb
thresholds
//then the hcount and vcount values are added to the running sum of hcounts and vcounts
//the counter is incremented
else if ((hcount < 1024) && (vcount < 768) && (cr > CR_MIN) && (cr < CR_MAX)
&& (cb > CB_MIN) && (cb < CB_MAX))

begin
hsum <= hsum + hcount;
vsum <= vsum + vcount;
counter <= counter + 1;
end

//if the current frame has passed, store sum and counter and do divide
else if (old_vsync && ~vsync)

begin
last_counter <= counter;
last_hsum <= hsum;
last vsum <= vsum;
last x <=x[10:0];
last_y <=y[9:0];
counter <= 0;
hsum <= 0;
vsum <= (;

end

end
endmodule

“timescale Ins / 1ps
T
// Company:

// Engineer:

//

// Create Date: 22:14:49 12/09/2007

// Design Name:

// Module Name: hand logic
// Project Name:

// Target Devices:

// Tool versions:

// Description:

/!

// Dependencies:

/!

// Revision:

// Revision 0.01 - File Created
// Additional Comments:

/!

68

T

//hand_logic : this module takes in two hand positions in (x, y) form and

computes the angle and the height of the hand positions

module hand logic(clk, x1, y1, x2, y2, angle, height);

input clk;

input [10:0] x1, x2;
input [9:0] y1, y2;
output reg [15:0] angle;
output reg [15:0] height;
wire [10:0] ndx;

wire [9:0] ndy;

wire sX, Sy;

//lusing parameters so that the users can easily specify the behavior and output
//lusing the defparams method on the instances of the module

parameter SENSITIVITY = 300;

parameter LEFT = 2;

parameter RIGHT = 1;

parameter CENTER = 0;

//lusing signed dx and dy so that we know the relative positions of x and y
reg signed[10:0] dx;
reg signed[10:0] dy;

always @ (posedge clk)

begin

dx <= $signed({1'b0,x2}) - $signed({1'b0,x1});
dy <= $signed({1'b0,y2}) - $signed({1'b0,y1});

//height is simply the average of the y values of the two hands
height <= (y1 + y2)/2;

//angle is the angle between the hands

//more formally, this is the angle between the line connecting the two hands and the horizontal
//If the angle is between 45 degrees and 135 degrees, then the hands are turning counterclockwise.
//If the angle is between -45 degrees and -135 degrees, then the hands are turning clockwise.

//If the angle is between -45 degrees and 45 degrees or between -135 degrees and 135 degrees,
//then the hands are recognized as not turning.

//In other words, if the angle formed by the hands is less than 45 degrees from the horizontal,
//then the hands are recognized as not turning.

angle <= ((dy > dx) && (dy > -dx)) ? RIGHT :

((-dy > dx) && (-dy > -dx)) ? LEFT :

CENTER;

end
endmodule

‘timescale Ins / 1ps
T

// Company:

/I Engineer:

//

// Create Date: 17:17:53 12/10/2007

// Design Name:

// Module Name: vram_display

// Project Name:

// Target Devices:

// Tool versions:

// Description:

/!

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

/I Additional Comments:

/

T
T

// generate display pixels from reading the ZBT ram

// note that the ZBT ram has 2 cycles of read (and write) latency
//

// We take care of that by latching the data at an appropriate time.
//

// Note that the ZBT stores 36 bits per word; we use only 32 bits here,
// decoded into four bytes of pixel data.

module vram_display(reset,clk,hcount,vcount,vr_pixel,
vram_addr,vram read_data);

input reset, clk;

input [10:0] hcount;

input [9:0] vcount;
output [17:0] vr_pixel;
output [18:0] vram_addr;
input [35:0] vram_read data;

wire [18:0] vram_addr = {vcount, hcount[9:1]};

wire [1:0] hc4 = hcount[1:0];

reg [17:0] vr_pixel;
reg [35:0] vr_data_latched;
reg [35:0] last vr_data;

always @(posedge clk)
last vr data <= (hc4==2'd3) ? vr_data_latched : last_vr_data;

69

70

always @(posedge clk)
vr_data latched <= (hc4==2'd1) ? vram read data : vr _data latched;

//modification is made here!
//the vr_pixel is now 18 bits long. So instead of getting 8 bits 4 times
// 'you get 18 bits of last vr data 2 times
always @(*) // each 36-bit word from RAM is decoded to 4 bytes
case (hc4)
2'd3: vr_pixel =last vr data[17:0];//last vr data[7:0];
2'd2: vr_pixel = last_vr_data[17:0];//last_vr data[7+8:0+8];
2'd1: vr_pixel = last_vr_data[35:18];//last_vr_data[7+16:0+16];
2'd0: vr_pixel = last_vr_data[35:18];// last_vr_data[7+24:0+24];
endcase

endmodule // vram_display

“timescale Ins / 1ps
T iy
// Company:

// Engineer:

/!

// Create Date: 20:52:21 12/10/2007

// Design Name:

// Module Name: camera corner display

// Project Name:

// Target Devices:

// Tool versions:

// Description:

/!

// Dependencies:

/!

// Revision:

/I Revision 0.01 - File Created

// Additional Comments: logic for creating the display on the top left corner of the screen
/!

T 7]

/lcamera_corner_display module : this module contains the logic for creating the display
//on the top left corner of the screen
module camera_corner_display(clk, hcount, vcount, x_left, y_left, x_right, y right, camera_ip, pixel out);
input clk;
input [10:0] hcount, x_left, x_right;
input [9:0] vcount, y_left, y right;
output [23:0] pixel out;
output camera_ip;
reg camera_ip;
reg [23:0] pixel reg;
assign pixel out = pixel reg;
always @ (posedge clk) begin
//if the hcount is less than 255 and vcount is less than 192
//then the pixel is in the top left corner of the screen
//set the camera_ip to 1
if ((hcount <= 255) && (vcount < 192))
camera_ip <= 1;
else camera_ip <= 0;
if (camera_ip)

71

//Tf the hcount is between x/4-10 and x/4+10 and the vcount is between y/4-10

and y/4+10,

//then the pixel is colored with its corresponding color.

//red gloves correspond to the red blob

//blue gloves correspond to the blue blob

pixel reg <= ((hcount > x_left/4-10 & hcount < x_left/4+10) &
(veount >y left/4-10 & vecount <

y_left/4+10)) ? 24'h0066FF :

((hcount > x_right/4-10 & hcount < x_right/4+10) &

(veount >y right/4-10 & vcount <y right/4+10) ? 24'hFF0000 :

24'h222222);

else pixel reg <= 24'b0;

end

endmodule

st ke sttt sk sk ok ok okl ol ke ekt sk stk ok okl ol sk otk ol ol skt ok sk kol ok ok ok

FO¥ X K K K K K X XK XK K K X X K X K K X X X X K X X

This file is owned and controlled by Xilinx and must be used *
solely for design, simulation, implementation and creation of *
design files limited to Xilinx devices or technologies. Use *
with non-Xilinx devices or technologies is expressly prohibited *

and immediately terminates your license. *
*

XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" *
SOLELY FOR USE IN DEVELOPING PROGRAMS AND SOLUTIONS FOR *
XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION *

AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION *

OR STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS *
IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT, *

AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE *
FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY *
WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE *
IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR *
REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF *
INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS *

FOR A PARTICULAR PURPOSE. *

%
Xilinx products are not intended for use in life support *
appliances, devices, or systems. Use in such applications are *
expressly prohibited. *

k
(c) Copyright 1995-2006 Xilinx, Inc. *
All rights reserved. *

***/

/I ' The synopsys directives "translate _off/translate_on" specified below are
// supported by XST, FPGA Compiler II, Mentor Graphics and Synplicity synthesis
// tools. Ensure they are correct for your synthesis tool(s).

// You must compile the wrapper file divider.v when simulating

// the core, divider. When compiling the wrapper file, be sure to

// reference the XilinxCoreLib Verilog simulation library. For detailed
// instructions, please refer to the "CORE Generator Help".

“timescale 1ns/1ps

module divider(

clk,

dividend,

divisor,

quotient,
remainder,

rfd);

input clk;

input [29 : 0] dividend;
input [18 : 0] divisor;
output [29 : 0] quotient;
output [18 : 0] remainder;

output rfd;

// synopsys translate off

DIV_GEN_V1_0 #(

inst (

1, // algorithm_type
0, // bias

0, // ¢_has_aclr

0, // ¢_has_ce

0, // ¢_has_sclr

0, // ¢_sync_enable
1, // divelk_sel

30, // dividend_width
19, // divisor_width
8, // exponent_width
0, // fractional b

19, // fractional width
1, // latency

8, // mantissa_width
0) // signed_b
.CLK(clk),
.DIVIDEND(dividend),
.DIVISOR(divisor),
.QUOTIENT(quotient),
.REMAINDER (remainder),
.RFD(rfd),

CEQ),

.ACLR(),

.SCLR(),

DIVIDEND_MANTISSA(),
DIVIDEND_SIGN(),
DIVIDEND_EXPONENTY(),
DIVISOR_MANTISSA(),
DIVISOR_SIGN(),

DIVISOR_EXPONENT(),
.QUOTIENT MANTISSA(),
.QUOTIENT SIGN(),
.QUOTIENT EXPONENTY(),
.OVERFLOW(),

72

UNDERFLOW());

// synopsys translate_on

/ FPGA Express black box declaration

// synopsys attribute fpga_dont_touch "true"

// synthesis attribute fpga_dont touch of divider is "true"
/I XST black box declaration

// box_type "black box"

// synthesis attribute box_type of divider is "black box"

endmodule

// ps2_mouse_xy gives a high-level interface to the mouse, which
// keeps track of the "absolute" X,y position (within a parameterized
// range) and also returns button presses.

module ps2_mouse xy(clk, reset, ps2_clk, ps2 data, mx, my, btn_click);

input clk, reset;

inout ps2_clk, ps2_data; // data to/from PS/2 mouse
output [11:0] mx, my; // current mouse position, 12 bits
output [2:0] btn_click; // button click: Left-Middle-Right

// module parameters
parameter MAX X =1023;
parameter MAX Y =767,

// low level mouse driver

wire [8:0] dx, dy;
wire [2:0] btn_click;
wire data ready;

wire error no_ack;
wire [1:0] ovf xy;
wire streaming;

ps2_mouse ml(clk,reset,ps2 clk,ps2 data,dx,dy,ovf xy, btn_click,
data_ready,streaming);

// Update "absolute" position of mouse

reg [11:0] mx, my;
wire sx = dx[8]; // signs
wire sy =dy[8];

//MODIFICATION!!!

//decreasing the speed by a factor of 4

//this is for making sure that the mouse doesn't move too fast

//that the track created by the mouse becomes discontinuous
wire [8:0] ndx =sx ? {3'b0,~dx[7:2]}+1 : {3'b0,dx[7:2]};

wire [8:0] ndy =sy ? {3'b0,~dy[7:2]}+1 : {3'b0,dy[7:2]};

73

always @(posedge clk) begin
mx <=reset ? 12'd300 :
data ready ? (sx ? (mx>ndx ? mx - ndx : 0)
:(mx <MAX X -ndx ? mx+ndx : MAX X)) : mx;
//'note Y is flipped for video cursor use of mouse
my <=reset ? 12'd300 :
data ready ? (sy ? (my < MAX Y - ndy ? my+ndy : MAX Y)
: (my>ndy ? my - ndy : 0)) : my;

/! data ready ? (sy ? (my>ndy ? my - ndy : 0)

/l : (my <MAX Y - ndy ? my+ndy : MAX Y)) : my;
end

endmodule

s

/I PS/2 MOUSE

/

// 6.111 Fall 2005

/!

// NOTE: make sure to change the mouse ports (mouse clock, mouse data) to
/! bi-directional 'inout' ports in the top-level module

//

/I specifically, labkit.v should have the line

/

// inout mouse clock, mouse data;

//

// This module interfaces to a mouse connected to the labkit's PS2 port.

// The outputs provided give dx and dy movement values (9 bits 2's comp)
// and three button click signals.

//

// NOTE: change the following parameters for a different system clock

/! (current configuration for 50 MHz clock)

/! CLK HOLD : 100 usec hold to bring PS2 CLK low
/" RCV_WATCHDOG TIMER_VALUE : (PS/2 RECEIVER) 2 msec count

/! RCV_WATCHDOG TIMER BITS : bits needed for timer
/! INIT TIMER VALUE : (INIT process) 0.5 sec count

/! INIT TIMER_ BITS : bits needed for timer
T i

//

// Nov-8-2005: Registered the outputs (dout_dx, dout_dy, ovf xy, btn_click) in [ps2_mouse]

/! Added output "streaming"

// Nov-9-2005: synchronized ps2_clk to local clock for transmitter in [ps2_interface]

/! Programmed watchdog_timer for [ps2] (receiver module)

/! Programmed init_timer for [ps2_mouse] (resets initialization)

T T T

module ps2_mouse(clock, reset, ps2_clk, ps2_data, dout_dx,
dout_dy, ovf xy, btn_click, ready, streaming);

input clock, reset;

inout ps2_clk, ps2_data; //data to/from PS/2 mouse

output [8:0] dout_dx, dout dy; //9-bit 2's compl, indicates movement of mouse
output [1:0] ovf xy; //==1 if overflow: dx, dy

output [2:0] btn_click; //button click: Left-Middle-Right

output ready; //synchronous 1 cycle ready flag

74

75

output streaming; //==1 if mouse is in stream mode

T

// PARAMETERS

/I # of cycles for clock=50 MHz

parameter CLK_HOLD = 3250; //100 usec hold to bring PS2 CLK
low

parameter RCV. WATCHDOG TIMER VALUE = 65000; // For PS/2 RECEIVER : # of sys_clks for
2msec.

parameter RCV. WATCHDOG _TIMER BITS =17; /! : bits
needed for timer

parameter INIT_TIMER VALUE = 16250000; /I For INIT process : sys_clks for 0.5
sec.(SELF-TEST phase takes several miliseconds)

parameter INIT _TIMER BITS =28; /! : bits needed
for timer

s
wire reset_init_timer;

T

//CONTROLLER:

//-initialization process:

/! Host: FF Reset command

/! Mouse: FA Acknowledge

/! Mouse: AA Self-test passed

/! Mouse: 00 Mouse ID

/! Host: F4 Enable

/! Mouse: FA Acknowledge

parameter SND_RESET =0, RCV_ACKI1 =1, RCV_STEST =2, RCV_ID = 3;
parameter SND_ENABLE =4, RCV_ACK2 =5, STREAM = 6;
reg [2:0] state;

wire send, ack;
wire [7:0] packet;
wire [7:0] curkey;
wire key ready;

//INOTE: no support for scrolling wheel, extra buttons
always @(posedge clock) begin
if (reset || reset_init_timer) state <= SND_RESET;
else case (state)

SND RESET: state <= ack ? RCV_ACKI1 : state;

RCV_ACKI:state <= (key ready && curkey==8'hFA) ? RCV_STEST : state;

RCV_STEST: state <= (key_ready && curkey==8'hAA) ? RCV_ID : state;

RCV_ID: state <= (key_ready) ? SND_ENABLE : state; //any device type

SND ENABLE: state <= ack ? RCV_ACK?2 : state;
RCV_ACK2:state <= (key_ready && curkey==8'hFA) ? STREAM :state;

STREAM: state <= state;
default:state <= SND RESET;
endcase
end

assign send = (state==SND_RESET) || (state==SND_ENABLE);
assign packet = (state==SND_RESET) ? 8'hFF :
(state==SND_ENABLE) ? 8'hF4 :
8'h00;

76

assign streaming = (state==STREAM);

// Connect PS/2 interface module
ps2_interface ps2_mouse(.reset(reset), .clock(clock),
.ps2c(ps2_clk), .ps2d(ps2_data),
.send(send), .snd_packet(packet), .ack(ack),
.rev_packet(curkey), .key ready(key ready));
defparam ps2_mouse.CLK_HOLD = CLK _HOLD;
defparam ps2_mouse. WATCHDOG TIMER VALUE =RCV_WATCHDOG TIMER VALUE;
defparam ps2_mouse. WATCHDOG TIMER BITS =RCV_WATCHDOG_TIMER BITS;

T i

// DECODER
//http://www.computer-engineering.org/ps2mouse/
/! bit-7 3 bit-0

//Byte 1: Y-ovf X-ovf Y-sign X-sign 1 Btn-M Btn-R Btn-L
//Byte 2: X movement

//Byte 3: 'Y movement

reg [1:0] bindex, old_bindex;

reg [7:0] status, dx, dy; //temporary storage of mouse status
reg [8:0] dout_dx, dout_dy; //Clock the outputs

reg [1:0] ovf xy;

reg [2:0] btn_click;

wire ready;

always @(posedge clock) begin
if (reset) begin
bindex <= 0;
status <= 0;
dx <=0;
dy <= 0;
end else if (key ready && state==STREAM) begin
case (bindex)
2'b00: status <= curkey;
2'b01: dx <= curkey;
2'b10: dy <= curkey;
default: status <= curkey;
endcase

bindex <= (bindex==2'b10) ? 0 : bindex + 1;

if (bindex == 2'b10) begin //Now, dy is ready
dout_dx <= {status[4], dx}; /12's compl 9-bit
dout_dy <= {status[5], curkey}; /12's compl 9-bit
ovf xy <= {status[6], status[7]}; /loverflow: x, y

btn_click <= {status[0], status[2], status[1]}; //button click: Left-Middle-Right
end
end //end else-if (key ready)
end

always @(posedge clock)
old_bindex <= bindex;

assign ready = (bindex==2'b00) && old_bindex==2'b10;

T T

71

// INITIALIZATION TIMER
/! ==> RESET if processs hangs during initialization
reg [INIT TIMER BITS-1:0] init_timer count;
assign reset_init_timer = (state != STREAM) && (init_timer count==INIT TIMER VALUE-1);
always @(posedge clock)
begin

init_timer count <= (reset || reset_init timer || state==STREAM) ?

0 : init timer count + I;

end

endmodule

T i
// PS/2 INTERFACE: transmit or receive data from ps/2

module ps2_interface(reset, clock, ps2c, ps2d, send, snd_packet, ack, rcv_packet, key ready);
input clock,reset;

inout ps2c; // ps2 clock (BI-DIRECTIONAL)

inout ps2d; // ps2 data (BI-DIRECTIONAL)

input send; //flag: send packet _
output ack; // end of transmission | for transmitting

input [7:0] snd_packet; // data packet to send to PS/2 B
output [7:0] rcv_packet; //packet received from PS/2 _
output key ready; // new data ready (rcv_packet) _| for receiving

T i

// MAIN CONTROL

T

parameter CLK_HOLD = 3250; //hold PS2 CLK low for 100 usec (50 Mhz)
parameter WATCHDOG_TIMER VALUE = 65000; // Number of sys_clks for 2msec.

parameter WATCHDOG TIMER BITS =17, // Number of bits needed for timer _| for
RECEIVER

wire serial_dout; //output (to ps2d)
wire rcv_ack; //ACK from ps/2 mouse after data transmission

wire we_clk, we_data;

assign ps2c =we _clk ?0: 1'bZ;
assign ps2d = we_data ? serial _dout : 1'bZ;

assign ack = rcv_ack;

T T
// TRANSMITTER MODULE
T T

T 7T
// COUNTER: 100 usec hold

reg [15:0] counter;

wire en_cnt;

wire cnt_ready;

always @(posedge clock) begin

78

counter <=reset ? 0 :
en_cnt ? counter+1 :
0;
end
assign cnt_ready = (counter>=CLK_ HOLD);

s

// SEND DATA

!/ hold CLK low for at least 100 usec

// DATA low

I Release CLK

/! (on negedge of ps2_clock) - device brings clock LOW
/! REPEAT: SEND data
I Release DATA

/! Wait for device to bring DATA low

I Wait for device to bring CLK low

// Wait for device to release CLK, DATA
reg [3:0] index;

// synchronize PS2 clock to local clock and look for falling edge
reg [2:0] ps2c_sync;

always @ (posedge clock) ps2c_sync <= {ps2¢c_sync[1:0],ps2c};
wire falling_edge = ps2¢c_sync[2] & ~ps2c_sync[1];

always @(posedge clock) begin

if (reset) begin
index <= 0;
end
else if (falling_edge) begin //falling edge of ps2c
if (send) begin //transmission mode
if (index==0)
index <=cnt ready ? 1 : 0; //index=0: CLK low
else
index <= index + 1; //index=1: snd_packet[0],
=8: snd_packet[7],
/I 9: odd parity,
=10: stop bit
/! 11:
wait for ack
end else
index <= 0;
end else
index <= (send) ? index : 0;
end
assign en_cnt = (index==0 && ~reset && send);
assign serial_dout = (index==0 && cnt_ready) ? 0 : //bring DATA low before
releasing CLK
(index>=1 && index <=8) ? snd_packet[index-1] :
(index==9) ? ~(“snd_packet) :
//odd parity
L
//including last '1' stop bit
assign we_clk = (send && !cnt_ready && index==0); //Enable when

counter is counting up

assign we_data = (index==0 && cnt_ready) || (index>=1 && index<=9);//Enable after 100usec CLK
hold

79

assign rcv_ack = (index==11 && ps2d==0); /luse to

reset RECEIVER module

T T

// RECEIVER MODULE
T i i
reg [7:0] rcv_packet; // current keycode

reg key ready; // new data

wire fifo rd; // read request
wire [7:0] fifo_ data; // data from mouse

wire fifo_empty; // flag: no data

/Iwire fifo_overflow; // keyboard data overflow

assign fifo rd = ~fifo_empty; // continuous read

always @(posedge clock)

begin
/I get key if ready
rcv_packet <= ~fifo_empty ? fifo data : rcv_packet;
key ready <= ~fifo_empty;

end

s

// connect ps2 FIFO module

reg [WATCHDOG TIMER BITS-1 : 0] watchdog timer count;

wire [3:0] rcv_count; //count incoming data bits from ps/2 (0-11)

wire watchdog timer done = watchdog_timer count==(WATCHDOG TIMER VALUE-1);
always @(posedge clock)
begin
if (reset || send || rev_count==0) watchdog_timer count <= 0;
else if (~watchdog_timer done)
watchdog_timer count <= watchdog_timer count + 1;
end

ps2 ps2_receiver(.clock(clock), .reset(!send && (reset || rev_ack)), //RESET on reset or End of
Transmission
.ps2c(ps2c), .ps2d(ps2d),

fifo_rd(fifo_rd), .fifo_data(fifo data), //inl,
out8

fifo_empty(fifo_empty) , .fifo_overflow(), //outl
outl

.watchdog(watchdog_timer_ done), .count(rcv_count));
endmodule

T T
// PS/2 FIFO receiver module (from 6.111 Fall 2004)

module ps2(reset, clock, ps2c, ps2d, fifo_rd, fifo_data, fifo_empty,fifo_overflow, watchdog, count);
input clock,reset,watchdog,ps2¢,ps2d,;

E

input fifo_rd,

output [7:0] fifo_data;
output fifo_empty;
output fifo_overflow;
output [3:0] count;

reg [3:0] count; // count incoming data bits
reg [9:0] shift; // accumulate incoming data bits

reg [7:0] fifo[7:0]; // 8 element data fifo
reg fifo_overflow;
reg [2:0] wptr,rptr; // fifo write and read pointers

wire [2:0] wptr_inc = wptr + 1;

assign fifo_empty = (wptr == rptr);
assign fifo_data = fifo[rptr];

// synchronize PS2 clock to local clock and look for falling edge
reg [2:0] ps2c_sync;

always @ (posedge clock) ps2c_sync <= {ps2c_sync[1:0],ps2c};
wire sample = ps2¢c_sync[2] & ~ps2c_sync[1];

reg timeout;
always @ (posedge clock) begin
if (reset) begin
count <= 0;
wptr <= 0;
rptr <= 0;
timeout <= 0;
fifo_overflow <= 0;
end else if (sample) begin
// order of arrival: 0,8 bits of data (LSB first),odd parity, 1
if (count==10) begin
// just received what should be the stop bit
if (shift[0]==0 && ps2d==1 && ("shift[9:1])==1) begin
fifo[wptr] <= shift[8:1];
wptr <= wptr_inc;
fifo_overflow <= fifo_overflow | (wptr_inc == rptr);
end
count <= 0;
timeout <= 0;
end else begin
shift <= {ps2d,shift[9:1]};
count <= count + 1;
end
end else if (watchdog && count!=0) begin
if (timeout) begin
// second tick of watchdog while trying to read PS2 data
count <= 0;
timeout <= 0;
end else timeout <= 1;
end

// bump read pointer if we're done with current value.
// Read also resets the overflow indicator

80

if (fifo_rd && !fifo_empty) begin
ptr <= rptr + 1;
fifo_overflow <= 0;
end
end
endmodule

// The RGBADD module takes in two rgb values (rgb1 and rgb2)

// sums them up by components, and returns the sum or 255 if they went over.

module rgbadd(clk, rgb1, rgb2, rgb);

input clk;
input [23:0] rgb1, rgb2;
output [23:0] rgb;

wire [7:0] rl =rgb1[23:16];
wire [7:0] gl =rgbl1[15:8];
wire [7:0] bl =rgb1[7:0];
wire [7:0] r2 = rgb2[23:16];
wire [7:0] g2 =rgb2[15:8];
wire [7:0] b2 = rgb2[7:0];
reg [8:0] sr, sg, sb;

// takes a cycle to complete, which should be fine

always @ (posedge clk)
begin
sr<=rl +12;
sg<=gl +g2;
sb <=bl + b2;
end

// bound by 255 if they went over
wire [7:0] r = sr[8] ? 8'hFF : sr[7:0];
wire [7:0] g = sg[8] ? 8'hFF : sg[7:0];
wire [7:0] b =sb[8] ? 8'hFF : sb[7:0];

assign rgb = {r[7:0],g[7:0],b[7:0]};

endmodule

// carsprite takes in the position of the car, the orientation of the car
// and sets the pixel appropriately if the car spans over (hcount, vcount)

module carsprite(
clk,orientation_x,orientation_y,x,y,
hcount, hcount_next1, hcount next2, hcount next3,
vcount, veount _nextl, vcount next2, vcount next3,
pixel);

81

82

input clk;

input signed [15:0] orientation_x, orientation_y;

input [10:0] x, hcount, hcount nextl, hcount next2, hcount next3;
input [10:0] y, vcount, veount nextl, vcount next2, vcount next3;
output [23:0] pixel;

reg [23:0] pixel;

// rom for car sprite

wire [11:0] addr;

wire [23:0] dout;

rom3584x24 rom(addr,clk,dout);

// localize coordinates
wire signed [26:0] localx, localy, localcx, localcy;
localizepixel localize(clk, x, v,
hcount, hcount _nextl, hcount next2, hcount next3,
vcount, veount_nextl, vcount next2, vcount next3,
orientation_x, orientation_y, localx, localy, localcx, localcy);

// using the localized coordinates, if they did not go over the boundary
// of the rectangular car, change the address so it maps to the appropriate
// row
wire [26:0] addr2;
assign addr2 = (localcx >= $signed(0)) ?
((localx < $signed(54)) ?
((localcy >= $signed(0)) ?
((localy < $signed(64)) ? // rowid + colid * 56
$unsigned(localx) + $unsigned(localy)*56 : 0) :
0):
0):
0;
assign addr = addr2[11:0];

// whenever anything changes, reset pixel if addr is not 0.
// NOTE that we assumes that addr 0 in the rom is transparent
always @ (x or y or orientation_x or orientation_y or hcount or vcount or dout)
begin
pixel = (addr ==0) ? 0 : dout;
end

endmodule

// localize a pixel relative to the upper-left corner of car (x-halfwidth,y-haltheight)
// and also relative to the center
module localizepixel(clk, X, y,
hcount, hcount_nextl, hcount next2, hcount next3,
vcount, veount_nextl, vcount next2, vcount next3,
dirx, diry, localx, localy, localcx, localcy);
input clk;
input [10:0] x, y, hcount, hcount_nextl, hcount next2, hcount next3, vcount, vcount_nextl,
veount_next2, vcount_next3;
input signed [15:0] dirx, diry;
output reg [26:0] localx, localy, localcx, localcy;

parameter HALFWIDTH = 6912; // default width: 54 pixels * 256 /2
parameter HALFHEIGHT = 8192; // default height: 64 pixels * 256 / 2

wire signed [10:0] dist_x, dist_y;
assign dist_x = hcount_next3 - $signed(x);
assign dist_y = vcount_next3 - $signed(y);

reg signed [26:0] xdx, ydy, xdy, ydx, localcxtemp, localcytemp;

always @ (posedge clk)
begin
// FIRST CYCLE
xdx <= dist_x * dirx;
ydy <= dist_y * diry;
xdy <= dist_x * diry;
ydx <= dist_y * dirx;

// SECOND CYCLE

// dot products with orientation of car to find x and y
localcytemp <= xdx - ydy; // local x from center

// flip x and y for normal

localextemp <= xdy + ydx; // local y from center

// THRID CYCLE

localcx <= localcxtemp / $signed(256);

localcy <= localcytemp / $signed(256);

localx <= (localextemp + HALFWIDTH) / $signed(256);

localy <= (localcytemp + HALFHEIGHT) / $signed(256);
end

endmodule
“timescale Ins / 1ps

// downloaded from 6.111

// used for debouncing noisy signals

// please refer to the 6.111 website.

module debounce (reset, clock 65mhz, noisy, clean);
input reset, clock_65mhz, noisy;
output clean;

reg [19:0] count;
reg new, clean;

always @(posedge clock 65mhz)
if (reset) begin new <= noisy; clean <= noisy; count <= 0; end
else if (noisy != new) begin new <= noisy; count <= 0; end
else if (count == 650000) clean <= new;
else count <= count+1;

endmodule

// the gamemodule is what actually modifies and keeps track of the game state
/I game-modifying inputs include wheel angle and wheel height, play mode,
// and is_out_of track, is_at cptl, is_at cpt2, which come from the Graphics
// module.

83

84

module gamemodule(clk, reset, vsync,
wheel angle, wheel height,
play mode,
is_out of track, is at cptl,is at cpt2,
car X, car y,car orientation X, car orientation Yy,
speed,
lapnum);
input clk, reset,
vsync, // active low (high when refreshing frame)
play mode, //1 ifin play mode
is_out of track, // 1 if out of track
is_at cptl, is_at cpt2;
input [15:0] wheel angle, // angle = (clockwise degrees + 180) * 10:
//-180 deg => 0; 0 deg => 1800; 180 deg => 3600
wheel height; // 0 to 800

output [15:0] car_x, car_y;
// <car_orientation_x, car_orientation y> is the direction vector of the car.
// they should be normalized with length 9'b100000000 (256)
output signed [15:0] car_orientation X, car_orientation_y;
output [15:0] speed; // 0 to 50
output reg [2:0] lapnum;

// rotater keeps track of the orientation of the car and rotates according

// to wheel angle. Whenever rotate_trigger CHANGES, rotater will compute for

// new value of the car.

reg rotate_trigger;

rotatecar rotater(clk, reset, rotate_trigger, wheel angle, car_orientation_x, car_orientation_y);

reg [15:0] car_x, car_y, speed;

parameter BRAKE = 0; // CUTOFF at 500
parameter NEUTRAL = 1; // CUTOFF at 300
parameter GAS =2;
wire [1:0] gaspedal; // 0: brake, 1: neutral, 2: gas
// ' we could potentially make it more analog by using the wheel height
// directly. But due to the noises in hand-finding, that doesn't seem
// to be a good idea.
assign gaspedal = (wheel height > 500) ?

BRAKE :

(wheel height > 300) ?

NEUTRAL : GAS;

// need to rescale x after multiplying by speed because orientation are

// normalized to 256 in length and updating by speed number of pixels

// will be too quick.
wire signed [31:0] scaled vel x, scaled vel y;
assign scaled vel x = car_ orientation_x * $signed({1'b0,speed});
assign scaled vel y = car_ orientation_y * $signed({1'b0,speed});
wire signed [20:0] rescaled_vel x, rescaled vel y;
assign rescaled_vel x = (scaled_vel x >>>11);
assign rescaled_vel y = (scaled_vel y>>>11);

wire signed [15:0] nextcar_x, nextcar_y;
assign nextcar_x = $signed({1'b0,car_x}) + rescaled vel x;

85

assign nextcar_y = $signed({1'b0,car y}) - rescaled vel y;

reg old_vsync;

reg next_cpt; // 0 for 1st 1 for 2nd.
// This keeps track of which checkpoint we are interested in next.

always @ (posedge clk)
begin
if (reset)
begin
car_x <=300;
car_y <=300;
speed <= 0;

rotate_trigger <= 0,

lapnum <= 0;
next_cpt <= 0;

end
else

if (play_mode && (~vsync && old_vsync)) // after frame refresh

begin

Also make braking faster.

// next position 1023 767
// force it to not go off-screen
car_x <= (nextcar_x < 1023) ?

((nextcar x >=0) ?
nextcar X :
1022) :

0;

car_y <= (nextcar_y < 767) ?

// speed

((nextcar_y >=0) ?
nextcar y:
766) :

0;

if (is_out_of track) // when outside the track, lower the maxspeed (15).

begin

case (gaspedal)

BRAKE:
if (speed >= 10)
speed <= speed - 10;

else
speed <= 0;
NEUTRAL:
if (speed > 5)
speed <= speed - 5;
else

speed <= 0;
GAS: // limit to 15
if (speed < 15)
speed <= speed + 1;
else
if (speed >= 20)
speed <= speed - 5;
else
speed <= 15;
default:

speed <= 0;

endcase
end
else // otherwise, use normal configs: max speed = 30
begin
case (gaspedal)
BRAKE:
if (speed >=5)
speed <= speed - 5;
else
speed <= 0;
NEUTRAL:
if (speed >=1)
speed <= speed - 1;
GAS:
if (speed < 27)
speed <= speed + 3;
else
speed <= 30;
default:
speed <= 0;
endcase
end

/I depending on which checkpoint to look for, if that checkpoint
/1 is reached, sets to look for the other checkpoint and increments

// lapnum.
if (next_cpt)
begin
if (is_at_cpt2)
begin
next cpt <=-~next cpt;
lapnum <= lapnum + 1;
end
end
else
begin
if (is_at_cptl)
begin
next cpt <= ~next cpt;
lapnum <= lapnum + 1;
end
end

// changing rotate_trigger will cause direction to change to a new
/[direction according to the wheel angle.
rotate_trigger <= ~rotate_trigger;

end

old_vsync <= vsync;
end

endmodule

// rotatecar keeps track of the direction of the car and updates according to
// the wheel angle and when trigger changes.

module rotatecar(clk, reset, trigger, angle, dir_x, dir_y);
input clk, reset, trigger;
input [15:0] angle;
output signed [15:0] dir_x, dir_y;

// the rom storing vector components for 128 angles
reg [7:0] addr;

wire [31:0] dout;
angle rom angles(addr, clk, dout);

// derive direction from a row (dir_x in first 16 bits and dir_y in last 16)
assign dir_x = $signed(dout[31:16]);
assign dir_y = $signed(dout[15:0]);

reg old_trigger;

always @ (posedge clk)
begin
if (reset)
begin
addr <=0;
old trigger <=0;
end
else
begin
// update angle on change
if (~old_trigger & trigger)
begin
if (angle < 1500) // left
addr <= (addr > 0) ? (addr - 1) : 127,
else
if (angle > 2100) // right
addr <= (addr < 127) ? (addr + 1) : 0;
end
old trigger <= trigger;
end

end
// orientation

// matrix multiplication with [cos -sin ; sin cos] of 30 or -30
/l cos 5 * 1024 = 1020, sin 5 * 4096 = 357

/%
/I ALTERNATE IMPLEMENTATION, using MATRIX MULTIPLICATION

reg [3:0] stage;
reg oldtrigger;

always @ (posedge clk)
begin
oldtrigger <= trigger;
if (reset)
begin

87

dir x <=0;

dir_y <=256;

end

else

stage <= 10;

if (trigger != oldtrigger)
begin
stage <= 0;
end
else
begin
case (stage
0:
begin

end
begin
end

begin

end

begin

end

begin

end

begin

end

xcos <= dir_x * $signed(12'h3FC);
xtmp <= dir_x * $signed(12'h165);
ycos <=dir_y * $signed(12'h3FC);
ytmp <= dir_y * $signed(12'h165);
stage <= 1;

xsin <= xtmp / $signed(4);
ysin <= ytmp / $signed(4);
stage <=2;

leftx <= xcos - ysin;
lefty <= xsin + ycos;
rightx <= xcos + ysin;
righty <= ycos - xsin;
stage <=3;

newleftdir x <= leftx / $signed(1024);
newleftdir y <= lefty / $signed(1024);
newrightdir _x <= rightx / $signed(1024);
newrightdir_y <= righty / $signed(1024);
stage <=4;

leftxx <= newleftdir x * newleftdir x;
leftyy <= newleftdir y * newleftdir y;
rightxx <= newrightdir x * newrightdir x;
rightyy <= newrightdir y * newrightdir y;
stage <= 5;

leftdist2 <= leftxx + leftyy;
rightdist2 <= rightxx + rightyy;
stage <= 6;

88

&9

6:
begin
if (leftdist2 > $signed(67600)) // 2602
begin
newleftdir x1 <= newleftdir x *
$signed(12'h0FC); // approximation: 252 / 256 =256 /260
newleftdir yl1 <= newleftdir y *

$signed(12'hOFC);
end
else
if (leftdist2 < $signed(63504)) // 2522
begin
newleftdir x1 <= newleftdir x *
$signed(12'h104);
newleftdir yl <= newleftdir y *
$signed(12'h104);
end
else
begin
newleftdir x1 <= newleftdir x *
$signed(12'h100);
newleftdir yl <= newleftdir y *
$signed(12'h100);
end

if (rightdist2 > $signed(67600)) // 2602
begin
newrightdir x1 <= newrightdir_x *
$signed(12'h0FC); // approximation: 252 / 256 =256 / 260
newrightdir_yl <= newrightdir_y *

$signed(12'hOFC);
end
else
if (rightdist2 < $signed(63504)) // 2522
begin
newrightdir x1 <= newrightdir x *
$signed(12'h0FC);
newrightdir y1 <= newrightdir y *
$signed(12'h104);
end
else
begin
newrightdir x1 <= newrightdir_x *
$signed(12'h100);
newrightdir y1 <= newrightdir y *
$signed(12'h100);
end
stage <=7,
end
7:
begin

newleftdir_x <= newleftdir_x1 / $signed(256);
newleftdir_y <= newleftdir_y1 / $signed(256);
newrightdir_x <= newrightdir_x1 / $signed(256);
newrightdir_y <= newrightdir_y1 / $signed(256);
stage <= §;

end
8:
begin
if (angle < 1500) // left
begin
dir x <=newleftdir x;
dir y <=newleftdir y;
end
else
if (angle > 2100) // right
begin
dir_x <=newrightdir_x;
dir_y <= newrightdir_y;
end
stage <=9;
end
default:
stage <= 10; // do nothing
endcase
end
end
*/
endmodule

// the graphics module outputs game-related display: the car,
// the track and the background.

// it also does collision detection and outputs the result in
//'is_out_of track, is_at apt2 and is_at cpt2.

module graphics (vclock, reset,
car_X, car_y, car_orientation_x, car_orientation_y,
track, cptlblob, cpt2blob,
hcount, hcount_nextl, hcount next2, hcount next3,
vcount, veount_nextl, vcount next2, vcount next3,
hsyne,vsyne,blank,
phsync,pvsync,pblank,pixel,
is_out_of track, is_at cptl, is_at cpt2);
input velock; // 65MHz clock
input reset; // 1 to initialize module
input [10:0] hcount, hcount nextl, hcount_next2, hcount next3;
// horizontal index of current pixel (0..1023) and the next 3 pixels
input [9:0] veount, veount_nextl, vcount_next2, vcount next3;
// vertical index of current pixel (0..767) and the next 3 pixels
input hsync; // XVGA horizontal sync signal (active low)
input vsync; // XVGA vertical sync signal (active low)
input blank; // XVGA blanking (1 means output black pixel)

// car position and orientation
input [15:0] car_x, car_y;
input signed [15:0] car_orientation_x, car_orientation_y;

input track; // there is a track at hcount vcount
output reg is_out_of track; // output 1 if car pixel has gone out of track pixels

90

input cptlblob, cpt2blob; // the check point 1/2 has a pixel at that point
output reg is_at_cptl, is_at_cpt2;

output phsync; // horizontal sync
output pvsync; // vertical sync
output pblank; // blank

output [23:0] pixel; // pixel's rgb

assign phsync = hsync;
assign pvsync = vsync;
assign pblank = blank;

wire [23:0] pixell;
wire is_off track; // whether current pixel indicates car is off track

reg old vsync;
always @ (posedge vclock)

begin
if (reset)
begin
is_out of track <= 0;
is_at cptl <=0;
is_at cpt2 <=0,
end
else
if (~old_vsync && vsync) // posedge of vsync, reset and begin checking
begin
is_out_of track <= 0;
is_at_cptl <=0;
is_at_cpt2 <=0;
end
else
begin
// sets is_out_of track if some is_off track
// sets is_at_cptl if there is a checkpoint and a car pixel at the same point
// sets is_at_cpt2 if there a pixel on checkpoint 2 and a car pixel are at the
same point

is_out of track <=is out of track |is_off track;

is_at _cptl <=1is_at cptl | (cptlblob && (pixell !=0));
is_at_cpt2 <=1is_at cpt2 | (cpt2blob && (pixell !=0));

end
old_vsync = vsync;
end

// the car sprite placed at the car position and orientation as specified.
carsprite cs1 (
vclock,car orientation x,{1'b0,car orientation y},car x,car y,
hcount, hcount_nextl, hcount next2, hcount next3,
vcount, veount_nextl, vcount next2, vcount next3,
pixell);

// get rgb data from tiles

wire [23:0] track pixel;

tracktile tt1 (vclock,hcount,vcount,track,track pixel);
wire [23:0] background pixel;

maptile mtl (vclock,hcount,vcount,background pixel);

91

// if the car is there, print a car pixel, otherwise print the track
// pixel if there is track on it
assign pixel = (pixell == 0) ?

background pixel) :

/1 if there a car pixel there but no track, set to 1
assign is_off track = (pixell !=0) & (~track);

endmodule

// tracktile basically queries a rom storing a tile for the track
// by changing using hcount and vcount. If there is no tile there,
/I however, do not display anything.
module tracktile(clk, hcount, vcount, track, track pixel);
input clk;
input [10:0] hcount;
input [9:0] vcount;
input track; // has track at hcount vcount
output [23:0] track pixel;

parameter WIDTH = 128;
parameter HEIGHT = 128;

wire[13:0] addr;

wire[23:0] dout;

assign addr = hcount * HEIGHT + vcount;
tracktile rom trackrom(addr,clk,dout);
assign track pixel = (track) ? dout : 0;

endmodule

// maptile basically queries a rom storing a tile for the track
// by changing using hcount and vcount
module maptile(clk, hcount, vcount, map_pixel);

input clk;

input [10:0] hcount;

input [9:0] vcount;

output [23:0] map_pixel;

parameter WIDTH = 128;
parameter HEIGHT = 128;

wire[13:0] addr;

assign addr = hcount * HEIGHT + vcount;

maptile_ rom maptilerom(addr,clk,map_pixel);
endmodule

“timescale Ins / 1ps

// Displays speed gauge showing the specified speed.

module speedgauge(clk, vsync, speed, hcount, vcount, speed_ip, pixel);

((track) ?

pixell;

track pixel :

92

input clk;

input vsync;

input [15:0] speed;

input [10:0] hcount, vcount;
output [23:0] pixel;

output reg speed_ip;

// specify dimensions
parameter LEFT = 12;
parameter WIDTH = 30;

parameter BOTTOM = 620;

parameter TOP = 420;

// top line is determined by speed

wire [10:0] top_line;

assign top_line = BOTTOM - (speed * 2);

// fills up to top line.
reg [23:0] pixel;

always @ (posedge clk) begin

if ((hcount >= LEFT && hcount < (LEFT+WIDTH)) &&
((vcount >= TOP) && vcount < BOTTOM))

begin
else
end
else

begin
pixel <= 0;
speed_ip <=0;

end

end
endmodule

module colon_display(clk, reset, hcount, vcount, top left x, top left y, colon_ip, colon rgb)

input clk;

input reset;
input[10:0] hcount;
input[9:0] vcount;

if (vcount >= top_line)

pixel <= {speed[5:0],18'b0};

pixel <= 0;

speed _ip <= 1;

input[10:0] top_left_x; //top left corner position

input[9:0] top_left y;
output colon_ip;
output[23:0] colon_rgb;

reg colon_ip;
reg[23:0] colon_rgb;
wire[23:0] line;
//display colons

char_string_display char6(clk, hcount, vcount, line, 8'b00101110, top_left x, top_left y);

defparam char6.NCHAR = 1;

defparam char6. NCHAR BITS =1;

>

93

always @ (posedge clk)
begin
//within boundaries

if ((hcount >=top_left x) && (hcount <=top left x + 19) && (vcount >=top left y) && (vcount <=

top_left y +24))
colon ip <=1;
else colon_ip <=0;
//displays characters if within boundaries
if (colon_ip)
colon_rgb <= line;
else colon_rgb <= 24'b0;

end
endmodule

/!

/I File: cstringdisp.v

// Date: 24-Oct-05

/I Author: I. Chuang, C. Terman

/!

/I Display an ASCII encoded character string in a video window at some
// specified x,y pixel location.

/

/I INPUTS:

/

/I veclock - video pixel clock

/" hcount - horizontal (x) location of current pixel

/I vcount - vertical (y) location of current pixel

/I cstring - character string to display (8 bit ASCII for each char)
/I cx,cy - pixel location (upper left corner) to display string at
//

// OUTPUT:

/

/l pixel - video pixel value to display at current location

/

// PARAMETERS:

/

// NCHAR - number of characters in string to display

// NCHAR _BITS - number of bits to specify NCHAR

//

// pixel should be OR'ed (or XOR'ed) to your video data for display.

//

/I Each character is 8x12, but pixels are doubled horizontally and vertically
// so fonts are magnified 2x. On an XGA screen (1024x768) you can fit
// 64 x 32 such characters.

/

// Needs font rom.v and font_rom.ngo

//

// For different fonts, you can change font rom. For different string

// display colors, change the assignment to cpixel.

T i
//
// video character string display

94

95

/!
s

module char string_display (vclock,hcount,vcount,pixel,cstring,cx,cy);

parameter NCHAR = 8; // number of 8-bit characters in cstring
parameter NCHAR BITS = 3; // number of bits in NCHAR

input vclock; // 65MHz clock

input [10:0] hcount; // horizontal index of current pixel (0..1023)

input [9:0] veount; // vertical index of current pixel (0..767)

output [23:0] pixel; // char display's pixel //changed to 24-bits for rgb output
input NCHAR*8-1:0] cstring; // character string to display

input [10:0] cx;

input [9:0] cy;

//'1 line x 8 character display (8 x 12 pixel-sized characters)

wire [10:0] hoff = hcount-1-cx;

wire [9:0] voff = vcount-cy;

wire [NCHAR BITS-1:0] column = NCHAR-1-hofff NCHAR BITS-1+4:4]; //<NCHAR
wire [2:0] h = hoff[3:1]; 0.7

wire [3:0] v =voft[4:1]; /710..11

//'look up character to display (from character string)
reg [7:0] char;
integer n;
always @(*)
for (n=0; n<8 ;n=n+1) // 8 bits per character (ASCII)
char[n] <= cstring[column*8+n];

//'look up raster row from font rom

wire reverse = char[7];

wire [10:0] font_addr = char[6:0]*12 + v; // 12 bytes per character
wire [7:0] font byte;

font_rom f(font addr,vclock,font byte);

// generate character pixel if we're in the right h,v area
wire [23:0] cpixel = (font_byte[7 - h] ~ reverse) ? 24b111111111111111111111111 : 0; /changed to 24
bits for output
wire dispflag = ((hcount > cx) & (vcount >= cy) & (hcount <= cx+NCHAR*16)
& (veount < cy + 24));
wire [23:0] pixel = dispflag ? cpixel : 0;

endmodule

module finish_game(clk, reset, finish_game, hcount, vcount, vsync, finish_ip, finish_rgb);

input clk;

input finish _game; //whether game is finished or not
input[10:0] hcount;

input[9:0] vcount;

input reset;

output[23:0] finish_rgb;

output finish_ip;

96

input vsync;

reg finish_ip;
reg[23:0] finish_rgb;

//determines what to display

wire[23:0] line;

char_string_display char3(clk, hcount, vcount, line,
72'6010001110100111101001111010001000010000001001010010011110100001000100001 , 11'd400,
10'd350);

defparam char3.NCHAR =9;

defparam char3.NCHAR BITS =4;

always @(posedge clk)

begin

if (reset)
finish_ip <= 0; //set to 0 if reset so as to not appear after reset

//if within boundaries

if (finish_game && (hcount >= 300) && (hcount <= 650) && (vcount >= 300) && (vcount <= 450))
finish_ip <= 1;

else finish_ip <= 0;

if (finish_ip)

finish_rgb <= line; //displays box with lines

else finish_rgb <= 0;

end

endmodule
module incircle(clk, reset, radius_square, mouse_x, mouse_y, hcount, vcount, inbound);

input clk;

input reset;

input [20:0] radius_square; //radius square to be compared with
input[11:0] mouse_x; //positions of mouse input

input[11:0] mouse_y;

input[10:0] hcount;

input[9:0] vcount;

output inbound;

reg[10:0] hdiff;

reg[9:0] vdiff;

wire inbound;

assign inbound = (hdiff*hdiff + vdiff*vdiff <= radius_square)? 1'd1: 1'd0; //determines whether pixel lies
within circle

always @(posedge clk)

begin

if (hcount >= mouse _x) //find the absolute difference between the 2 x-coordinates
hdiff <= hcount - mouse_x;

else hdiff <= mouse_x- hcount;

if (vcount >= mouse_y)//find the absolute difference between the 2 y-coordinates
vdiff <= vcount - mouse _y;

else vdiff <= mouse_y- vcount;

end

endmodule
module lap_disp(clk, reset, hcount, vcount, vsync, lap no, lap _rgb, lap_ip);

input clk;

input reset;

input[10:0] hcount;

input[9:0] vcount;

input vsync;

input[2:0] lap_no; /no of checkpoints visited
output[23:0] lap_rgb; //rgb to be output
output lap_ip;

reg lap_ip;

reg[47:0] lap_b;

reg[23:0] lap_rgb;

wire[23:0] line;

//char_string_display instance to display charcter

char string display char2(clk, hcount, vcount, line, lap b, 11'd850, 10'd40);
defparam char2.NCHAR = 6;

defparam char2.NCHAR_BITS = 3;

always @(posedge clk)

begin

//determine character to display based on lap no

case (lap_no)

3'd0: lap_b <=48'b010000110101000001010100001000000010001100110000;

3'd1: lap_b <=48'b010000110101000001010100001000000010001100110001;

3'd2: lap_b <=48'b010000110101000001010100001000000010001100110010;

3'd3: lap_b <=48'b010000110101000001010100001000000010001100110011;

3'd4: lap_b <=48'b010000110101000001010100001000000010001100110100;

3'd5: lap_b <=48'b010000110101000001010100001000000010001100110101;

3'd6: lap_b <=48'b010000110101000001010100001000000010001100110110;

3'd7: lap_b <=48'b010000110101000001010100001000000010001100110111;\

//default: not needed

endcase

//determines whether hcount veount is within boundaries

if (hcount >= 850) && (hcount <= 980) && (vcount <= 60) && (vcount >= 40))
lap_ip <= 1'bl;

else lap_ip <= 1'b0;

if (lap_ip) //output character if within boundaries
lap _rgb <= line;
else lap_rgb <= 24'b0;

end

endmodule

module lights(reset, clk, ready_done, vsync, hcount, vcount, lights rgb, light ip, start game);

input reset;
input clk;

97

input ready done; //input from ready screen module
input vsync;

input[10:0] hcount;

input[9:0] vcount;

output[23:0] lights_rgb;

output light ip;

output start_game;

reg[7:0] count;

reg oldvsync;
reg[23:0] lights_rgb;
reg light ip;

reg start_game;

//locations of circles

parameter radius_square = 289;
parameter circlex = 30;
parameter circleyl = 220;
parameter circley2 = 270;
parameter circley3 = 320;
parameter circley4 = 370;

//determines whether pixel lies in any circle

wire circlel;

wire circle2;

wire circle3;

wire circle4;

incircle lights_incircle1(clk, reset, radius_square, circlex, circleyl, hcount, vcount, circlel);
incircle lights_incircle2(clk, reset, radius_square, circlex, circley2, hcount, vcount, circle2);
incircle lights_incircle3(clk, reset, radius_square, circlex, circley3, hcount, vcount, circle3);
incircle lights_incircle4(clk, reset, radius_square, circlex, circley4, hcount, vcount, circle4);

always @(posedge clk)
begin
if (reset)
begin
lights_rgb <= 24'b0;
count <= 0;//resets count
start_game <= 0;//resets start_game
end
oldvsync <= vsync;
if (ready_done && oldvsync && ~vsync) //when ready done is 1 and frame refresh

begin
if (count == 8'd239) //sets start_game signal when count is over
start game <= I,
else
begin
count <= count + 1; //increment counts if count is not over
start game <= 0;
end
end

//if pixel within boundaries

if ((hcount <= 51) && (hcount >= 12) && (vcount >= 200) && (vcount <= 390))
light ip <=1;

else light_ip <= 0;

if ((count <= 8'd59) && circlel) //1st second

98

99

lights_rgb <=24'b111111110000000000000000;

else if ((count >= 8'd60) && (count <= 8'd119) && circle2) //2nd second
lights_rgb <=24'b111111110000000000000000;

else if ((count >= 8'd120) && (count <= 8'd179) && circle3)//3rd second
lights_rgb <=24'b111111110000000000000000;

else if ((count >= 8'd180) && (count <= 8'd239) && circle4)//4th second
lights_rgb <= 24'6000000001111111100000000;

else lights rgb <= 24'h222222; //otherwise

end

endmodule

module Map(vram_addr, vram_write data, vram read data, vram_we, btn_click, clk, reset, edit, vsync,
mouse_x, mouse_y, hcount, vcount, pixel, ram0_clk, raml clk, ram0 we b, raml we b, ram0 cen b,
raml cen b, ram0 address, raml address, ram0 data, ram1 data, cptl x, cptl y, cpt2 x, cpt2 y);

input[18:0] vram_addr; //zvt address from video input modules
input[35:0] vram_write data;//data from video input modules
input vram_we;//write enabled signal from video input modules
output[35:0] vram_read data;//data read to output to video input modules
input clk;

input reset;

input vsync;

input edit;

input[11:0] mouse_x;

input[11:0] mouse _y;

input[10:0] hcount;

input[9:0] vcount;

input[2:0] btn_click;//button-click of mouse

output pixel;
output[11:0
output[11:0
output[11:0
output[11:0

cptl_x;//x-position of check-pt 1
cptl_y;//y-position of check-pt 2
cpt2 x;
cpt2 y;

—_ e —

reg[35:0] vram_read data;

reg[11:0] mouse_x_use;//register to hold fixed mouse position for each frame
reg[11:0] mouse_y use;

reg[2:0] old btn_click;

reg[11:0] cptl_x;

reg[11:0] cptl_y;

reg[11:0] cpt2_x;

reg[11:0] cpt2_vy;

reg[35:0] write_data 0; //register to hold data to write to zbt0
reg[35:0] write_data_1;//register to hold data to write to zbtl
reg zbt0_we; //write enabled signal for zbt0

reg zbtl _we; //write enabled signal for zbt1l

reg oldvsync;

reg pixel;

reg[31:0] pixel 1;

100

reg[31:0] pixel w;
reg[31:0] pixel c;
reg[31:0] vcount 1;
reg[18:0] zbt0 addr;
reg[18:0] zbtl addr;
reg[6:0] bit_no_c;

wire[35:0] zbt0_read data; //data read from zbt0
wire[35:0] zbtl read data; //data read from zbtl

output ram0_clk, raml_clk, ram0_we b, raml_we b, ram0 _cen b, raml _cen_b; /physical output to zbt
output[18:0] ram0_address, ram1_address; //physical output to zbt

inout[35:0] ram0_data; //physical in/out with zbt

inout[35:0] ram1_data; // physical in/out with zbt

//zbt drivers

zbt 6111 zbtO(clk, 1'b1, zbt0 we, zbt0 addr, write data 0, zbt0 read data, ram0 clk, ram0_we b,
ramQ_address, ram0_data, ram0 cen_b);

zbt 6111 zbtl(clk, 1'b1, zbtl _we, zbtl addr, write_data 1, zbtl read data, raml clk, raml_we b,
ram]_address, raml_data, raml_cen_b);

wire inbound; //determine whether pixel is in circle

reg inbound_old_1; //stores old inbound data to deal with delays

reg inbound_old 2;

incircle incirclel(clk, reset, 21'd2500, mouse_x_use, mouse_y_use, hcount, vcount, inbound);

parameter hpixel = 1344;

always @(posedge clk)

begin

{inbound old 2, inbound old 1} <= {inbound old 1, inbound}; //store old inbound data
veount 1<= vcount * hpixel; //pipelined method to find out serial no

pixel r <=vcount 1+ hcount - 1;//read address has to be input 2 cycles ahead

pixel ¢ <=vcount 1 + hcount - 3;

pixel w<=vcount 1 + hcount - 4;//extra cycle due to pipelining

oldvsync <= vsync;

old btn_click <=btn_click; //saves old mouse button-click

if (~old_btn_click[2] && btn_click[2]) //stores mouse X,y position for left button click

begin
cptl_x <=mouse_X;
cptl_y <= mouse_y;
end
if (~old_btn_click[0] && btn_click[0])
begin

cpt2_x <= mouse_X;
cpt2_y <= mouse_y;
end //stores mouse X,y position for right button click
if (reset)
begin
zbt0_we <= 1'b1; //clear memories of zbt 0 and zbtl

101

zbtl_we <= 1'bl;
write_data 0 <=36'D0;
write_data 1 <=36'D0;
mouse X_use<= mouse X;

mouse_y_use <= mouse_y;

zbt0 addr <= pixel w[23:5]; //address for pixel
zbtl addr <= pixel w[23:5];

pixel <= 1'b0; //output blank screen

end
else
if(edit) //in edit mode
begin
if (oldvsync && ~vsync)
begin
zbtl _we <= zbt0 we; //flip zbt every frame refresh
zbt0 we <= ~zbt0_we;
mouse X _use <= mouse_Xx;//update mouse position
mouse_y_use <= mouse_Yy;
end
if (~zbt0_we) //when zbt0 is being read
begin

zbtl addr <= pixel w[23:5]; //address to write to zbtl
zbt0_addr <= pixel r[23:5]; //address to read from zbt0
bit no ¢ <= {2'b0, pixel c[4:0]}; //corresponding bit no

/lupdates write_data 1 register every cycle
/Iwrites 1 when track exists or new track is being drawn

case (bit_no_c)
7'd0: begin
write_data 1 <=
{zbt0 read data[35:1], zbt0_read data[0] | inbound old 2};
pixel<= zbt0 read data[0];
end
7'd1: begin
write data 1 <=
{zbt0 read data[35:2], zbt0_read data[1] | inbound old 2, write_data 1[0]};
pixel<= zbt0 read data[1];
end
7'd2: begin
write_data_1 <=
{zbt0 read data[35:3], zbt0_read_data[2] | inbound old 2, write_data 1[1:0]};
pixel<= zbt0 read data[2];
end
7'd3: begin
write_data 1 <=
{zbt0 read data[35:4], zbt0_read_data[3] | inbound old 2, write_data 1[2:0]};
pixel<= zbt0 read data[3];
end
7'd4: begin
write_data_1 <=
{zbt0_read data[35:5], zbt0_read_data[4] | inbound old 2, write_data 1[3:0]};
pixel<= zbt0 read data[4];
end

102

7'd5: begin
write_data 1 <=
{zbt0 read data[35:6], zbt0 read data[5] |inbound old 2, write data 1[4:0]};
pixel<= zbt0 read data[5];
end
7'd6: begin
write data 1 <=
{zbt0_read data[35:7], zbt0 read data[6] | inbound old 2, write data 1[5:0]};
pixel<= zbt0 read data[6];
end
7'd7: begin
write_data 1 <=
{zbt0_read data[35:8], zbt0 read data[7] |inbound old 2, write data 1[6:0]};
pixel<= zbt0 read data[7];
end
7'd8: begin
write data 1 <=
{zbt0_read data[35:9], zbt0 read data[8] | inbound old 2, write data 1[7:0]};
pixel<=zbt0 read data[8];
end
7'd9: begin
write_data 1 <=
{zbt0 read data[35:10], zbt0 read data[9] | inbound old 2, write_data 1[8:0]};
pixel<= zbt0 read data[9];
end
7'd10: begin
write_data_1 <=
{zbt0 read data[35:11], zbt0 _read data[10] | inbound old 2, write data 1[9:0]};
pixel<= zbt0 read data[10];
end
7'd11: begin
write_data_1 <=
{zbt0 read data[35:12], zbt0 read data[11]|inbound old 2, write data 1[10:0]};
pixel<= zbt0 read data[11];
end
7'd12: begin
write data 1 <=
{zbt0 read data[35:13], zbt0 read data[12] |inbound old 2, write data 1[11:0]};
pixel<= zbt0 read data[12];
end
7'd13: begin
write_data_1 <=
{zbt0_read data[35:14], zbt0 _read data[13] |inbound old 2, write data 1[12:0]};
pixel<= zbt0 read data[13];
end
7'd14: begin
write_data 1 <=
{zbt0 read data[35:15], zbt0 _read data[14] |inbound old 2, write data 1[13:0]};
pixel<= zbt0 read data[14];
end
7'd15: begin
write_data_1 <=
{zbt0_read data[35:16], zbt0_read data[15] | inbound old 2, write data 1[14:0]};
pixel<= zbt0 read data[15];
end
7'd16: begin

write_data 1 <=

{zbt0 read data[35:17], zbt0 read data[16] | inbound old 2, write data 1[15:0]};

7'd17: begin

end

pixel<= zbt0 read data[16];

write data 1 <=

{zbt0_read data[35:18], zbt0 read data[17]|inbound old 2, write data 1[16:0]};

7'd18: begin

end

pixel<= zbt0 read data[l7];

write_data_ 1 <=

{zbt0 read data[35:19], zbt0 read data[18] | inbound old 2, write data 1[17:0]};

7'd19: begin

end

pixel<= zbt0 read data[18];

write data 1 <=

{zbt0_read data[35:20], zbt0 read data[19]|inbound old 2, write data 1[18:0]};

7'd20: begin

end

pixel<= zbt0 read data[19];

write data 1 <=

{zbt0 read data[35:21], zbt0 read data[20] | inbound old 2, write data 1[19:0]};

7'd21: begin

end

pixel<= zbt0 read data[20];

write_data 1 <=

{zbt0_read data[35:22], zbt0 _read data[21] | inbound old 2, write data 1[20:0]};

7'd22: begin

end

pixel<= zbt0 read data[21];

write_data_1 <=

{zbt0 read data[35:23], zbt0 _read data[22] | inbound old 2, write data 1[21:0]};

7'd23: begin

end

pixel<= zbt0 read data[22];

write data 1 <=

{zbt0 read data[35:24], zbt0 read data[23]|inbound old 2, write data 1[22:0]};

7'd24: begin

end

pixel<= zbt0 read data[23];

write_data_1 <=

{zbt0 read data[35:25], zbt0_read data[24] | inbound old 2, write data 1[23:0]};

7'd25: begin

end

pixel<= zbt0 read data[24];

write_data 1 <=

{zbt0_read data[35:26], zbt0 read data[25] | inbound old 2, write data 1[24:0]};

7'd26: begin

end

pixel<= zbt0 read data[25];

write_data_1 <=

{zbt0_read data[35:27], zbt0_read data[26] | inbound old 2, write data 1[25:0]};

7'd27: begin

end

pixel<= zbt0 read data[26];

103

104

write_data 1 <=
{zbt0 read data[35:28], zbt0 read data[27] | inbound old 2, write data 1[26:0]};
pixel<= zbt0 read data[27];
end
7'd28: begin
write data 1 <=
{zbt0_read data[35:29], zbt0 read data[28]|inbound old 2, write data 1[27:0]};
pixel<= zbt0 read data[28];
end
7'd29: begin
write_data_ 1 <=
{zbt0 read data[35:30], zbt0 read data[29] | inbound old 2, write data 1[28:0]};
pixel<= zbt0 read data[29];
end
7'd30: begin
write data 1 <=
{zbt0_read data[35:31], zbt0 read data[30] | inbound old 2, write data 1[29:0]};
pixel<= zbt0 read data[30];
end
7'd31: begin
write data 1 <=
{zbt0 read data[35:32], zbt0 read data[31] | inbound old 2, write data 1[30:0]};
pixel<= zbt0 read data[31];
end
7'd32: begin
write_data_ 1 <=
{zbt0_read data[35:33], zbt0 _read data[32] | inbound old 2, write data 1[31:0]};
pixel<= zbt0 read data[32];
end
7'd33: begin
write_data_1 <=
{zbt0 read data[35:34], zbt0 _read data[33] | inbound old 2, write data 1[32:0]};
pixel<= zbt0 read data[33];
end
7'd34: begin
write data 1 <=
{zbt0 read data[35], zbt0 _read data[34] |inbound old 2, write data 1[33:0]};
pixel<= zbt0 read data[34];

end
7'd35: begin
write_data_1 <=
{zbt0 read data[35] | inbound old 2, write data 1[34:0]};
pixel<= zbt0 read data[35];
end
default: pixel <= 1'bl;
endcase
end
else
begin

zbtl addr <= pixel r[23:5]; //zbtl is now being read
zbt0_addr <= pixel w[23:5];

bit no_c <= {2'b0, pixel c[4:0]}; //corresponding bit_no
case (bit_no_c)

7'd0: begin

105

write_data 0 <=
{zbtl read data[35:1], zbtl read data[0] |inbound old 2};
pixel<=zbtl read data[0];
end
7'd1: begin
write data 0 <=
{zbtl read data[35:2], zbtl read data[l] |inbound old 2, write data O[0]};
pixel<=zbtl read data[l];
end
7'd2: begin
write_data 0 <=
{zbtl read data[35:3], zbtl read data[2] |inbound old 2, write data 0[1:0]};
pixel<=zbtl read data[2];
end
7'd3: begin
write data 0 <=
{zbtl read data[35:4], zbtl read data[3] |inbound old 2, write data 0[2:0]};
pixel<=zbtl read data[3];
end
7'd4: begin
write data 0 <=
{zbtl read data[35:5], zbtl read data[4]|inbound old 2, write data 0[3:0]};
pixel<= zbtl read data[4];
end
7'd5: begin
write_data 0 <=
{zbtl read data[35:6], zbtl read data[5] | inbound old 2, write data 0[4:0]};
pixel<= zbtl read data[5];
end
7'd6: begin
write_data 0 <=
{zbtl read data[35:7], zbtl read data[6] | inbound old 2, write data 0[5:0]};
pixel<= zbtl read data[6];
end
7'd7: begin
write data 0 <=
{zbtl read data[35:8], zbtl read data[7] | inbound old 2, write data 0[6:0]};
pixel<= zbtl read data[7];
end
7'd8: begin
write_data 0 <=
{zbtl read data[35:9], zbtl read data[8] | inbound old 2, write data 0[7:0]};
pixel<= zbtl read data[8];
end
7'd9: begin
write_data 0 <=
{zbtl read data[35:10], zbtl read data[9] |inbound old 2, write data 0[8:0]};
pixel<= zbtl read data[9];
end
7'd10: begin
write_data 0 <=
{zbtl read data[35:11], zbtl read data[10] |inbound old 2, write data 0[9:0]};
pixel<= zbtl read data[10];
end
7'd11: begin

106

write_data 0 <=
{zbtl read data[35:12], zbtl read data[l11] |inbound old 2, write data 0[10:0]};
pixel<= zbtl read data[l1];
end
7'd12: begin
write data 0 <=
{zbtl read data[35:13], zbtl read data[12]|inbound old 2, write data O[11:0]};
pixel<= zbtl read data[l12];
end
7'd13: begin
write_data 0 <=
{zbtl read data[35:14], zbtl read data[13] |inbound old 2, write data 0[12:0]};
pixel<= zbtl read data[13];
end
7'd14: begin
write data 0 <=
{zbtl read data[35:15], zbtl read data[14]|inbound old 2, write data 0[13:0]};
pixel<= zbtl read data[14];
end
7'd15: begin
write data 0 <=
{zbtl read data[35:16], zbtl read data[15] | inbound old 2, write data 0[14:0]};
pixel<=zbtl read data[l5];
end
7'd16: begin
write_data 0 <=
{zbtl read data[35:17], zbtl read data[16] |inbound old 2, write data 0[15:0]};
pixel<= zbtl read data[16];
end
7'd17: begin
write_data 0 <=
{zbtl read data[35:18], zbtl read data[17] |inbound old 2, write data 0[16:0]};
pixel<= zbtl read data[17];
end
7'd18: begin
write data 0 <=
{zbtl read data[35:19], zbtl read data[18] |inbound old 2, write data 0[17:0]};
pixel<= zbtl read data[18];
end
7'd19: begin
write_data 0 <=
{zbtl read data[35:20], zbtl read data[19] |inbound old 2, write data 0[18:0]};
pixel<= zbtl read data[19];
end
7'd20: begin
write_data 0 <=
{zbtl read data[35:21], zbtl read data[20] |inbound old 2, write data 0[19:0]};
pixel<= zbtl read data[20];
end
7'd21: begin
write_data 0 <=
{zbtl read data[35:22], zbtl read data[21] |inbound old 2, write data 0[20:0]};
pixel<= zbtl read data[21];
end
7'd22: begin

107

write_data 0 <=
{zbtl read data[35:23], zbtl read data[22] | inbound old 2, write data 0[21:0]};
pixel<= zbtl read data[22];
end
7'd23: begin
write data 0 <=
{zbtl read data[35:24], zbtl read data[23]|inbound old 2, write data 0[22:0]};
pixel<= zbtl read data[23];
end
7'd24: begin
write_data 0 <=
{zbtl read data[35:25], zbtl read data[24] | inbound old 2, write data 0[23:0]};
pixel<= zbtl read data[24];
end
7'd25: begin
write data 0 <=
{zbtl read data[35:26], zbtl read data[25]|inbound old 2, write data 0[24:0]};
pixel<= zbtl read data[25];
end
7'd26: begin
write data 0 <=
{zbtl read data[35:27], zbtl read data[26] | inbound old 2, write data 0[25:0]};
pixel<= zbtl read data[26];
end
7'd27: begin
write_data 0 <=
{zbtl read data[35:28], zbtl read data[27] |inbound old 2, write data 0[26:0]};
pixel<= zbtl read data[27];
end
7'd28: begin
write_data 0 <=
{zbtl read data[35:29], zbtl read data[28] |inbound old 2, write data 0[27:0]};
pixel<= zbtl read data[28];
end
7'd29: begin
write _data 0 <=
{zbtl read data[35:30], zbtl read data[29] |inbound old 2, write data 0[28:0]};
pixel<= zbtl read data[29];
end
7'd30: begin
write_data 0 <=
{zbtl read data[35:31], zbtl read data[30] |inbound old 2, write data 0[29:0]};
pixel<= zbtl read data[30];
end
7'd31: begin
write_data 0 <=
{zbtl read data[35:32], zbtl read data[31]|inbound old 2, write data 0[30:0]};
pixel<= zbtl read data[31];
end
7'd32: begin
write_data 0 <=
{zbtl read data[35:33], zbtl read data[32] |inbound old 2, write data 0[31:0]};
pixel<= zbtl read data[32];
end
7'd33: begin

108

write_data 0 <=
{zbtl read data store[35:34], zbtl read data[33]|inbound old 2, write data 0[32:0]};
pixel<=zbtl read data[33];
end
7'd34: begin
write data 0 <=
{zbtl read data[35], zbtl read data[34] |inbound old 2, write data 0[33:0]};
pixel<= zbtl read data[34];
end
7'd35: begin
write_data 0 <=
{zbtl read data store[35] |inbound old 2, write data 0[34:0]};
pixel<= zbtl read data[35];
end
default: pixel <= 1'b1;
endcase
end
end
else //in play mode
begin
zbt0 addr <= vram_addr; //zbt0 is used by video camera
write data 0 <= vram_write_data;
vram_read data <= zbt0 read data;//output data from zbtO to camera module
zbt) we <= vram_we;
zbtl addr <= pixel r[23:5]; //zbtl used to display track
bit no ¢ <= {2'b0, pixel c[4:0]};/
zbtl we<= 1'b0;//write disabled
case (bit_no_c) //read corresponding track pixel
7'd0: pixel <= zbtl read_data[0];
7'd1: pixel <= zbtl read data[1];
7'd2: pixel <= zbtl read_ data[2];
7'd3: pixel <= zbtl read_data[3];
7'd4: pixel <= zbtl read_data[4];
7'd5: pixel <= zbtl read_data[5];
7'd6: pixel <= zbtl read data[6];
7'd7: pixel <= zbtl read_data[7];
7'd8: pixel <= zbtl read data[8];
7'd9: pixel <= zbtl read_data[9];
7'd10: pixel <= zbtl read data[10];
7'd11: pixel <= zbtl read data[l1];
7'd12: pixel <= zbtl read data[12];
7'd13: pixel <= zbtl read data[13];
7'd14: pixel <= zbtl read data[14];
7'd15: pixel <= zbtl _read data[15];
7'd16: pixel <= zbtl read data[16
7'd17: pixel <= zbtl _read data[17
7'd18: pixel <= zbtl read data[18
7'd19: pixel <= zbtl _read data[19];
7'd20: pixel <= zbtl _read data[20];
7'd21: pixel <= zbtl read data[21];
7'd22: pixel <= zbtl read data[22];
7'd23: pixel <= zbtl read data[23];
7'd24: pixel <= zbtl _read data[24];
7'd25: pixel <= zbtl read data[25];
7'd26: pixel <= zbtl read data[26];
7'd27: pixel <= zbtl _read data[27];

B

IR
IR
].
]

B

109

7'd28: pixel <= zbtl read data[28];
7'd29: pixel <= zbtl read data[29];
7'd30: pixel <= zbtl read data[30];
7'd31: pixel <=zbtl read data[31];
7'd32: pixel <=zbtl read data[32];
7'd33: pixel <=zbtl read data[33];
7'd34: pixel <=zbtl read data[34];
7'd35: pixel <=zbtl read data[35];
default: pixel <= 1;
endcase
end
end

endmodule

module mouse_div(clk in, clk out);
input clk in; /65mhz clk in
output clk out;//32.5 mhz clk out

reg clk out;

always @(posedge clk_in)

begin

clk_out <= ~clk_out; //inverts 32.5 Mhz signal at positive edge of 65 mhz clk
end

endmodule

module ready_screen(clk, edit, hcount, vcount, vsync, reset, ready_ip, ready rgb, ready done);

input clk;

input edit;

input[10:0] hcount;
input[9:0] vcount;
input reset;
output[23:0] ready_rgb;
output ready_done;
output ready _ip;

input vsync;

reg[7:0] count;

reg ready_ip;
reg[23:0] ready_rgb;
reg ready_done;

reg oldvsync;

wire[23:0] line;

//determines what to output

char_string_display charl(clk, hcount, vcount, line,
128'b0100011101000101010101000010000001010010010001010100000101000100010110010010000001
0010000100000101000011010010110100010101010010 , 11'd400, 10'd350);

defparam charl NCHAR = 16;

110

defparam char. NCHAR BITS =4;

always @(posedge clk)
begin
oldvsync <= vsync;
if (reset)
begin
count <= 8'd0;
ready done <=0;

end
if (~edit && oldvsync && ~vsync) //starts counting when edit is done and frame refresh
begin
if (count == 8'd180) //sets ready done signal to 1 when count is over
begin
count <= 8'd180;
ready done <= 1;
end
else count <= count + 1; //increment count if count is not over
end

//if within boundaries
if ((count >= 8'd1) && (count <= 8'd179) && (hcount >=300) && (hcount <= 800) && (vcount >= 300)
&& (veount <= 450))
ready ip <=1;
else ready_ip <=0,
if (ready_ip) //outputs line from character display if pixel within boundaries
ready rgb <= line;
else ready_rgb<=0;
end

endmodule

module timer Isb(clk, reset, hcount, vcount, top_left x, top_left y, vsync, start game, timer ip,
timer rgb);

input clk;

input reset;

input[10:0] hcount;
input[9:0] vcount;
input[10:0] top_left x;
input[9:0] top_left y;
input vsync;

input start_game;
output timer_ip;
output[23:0] timer_rgb;

reg[23:0] timer_rgb;

reg timer_ip;

reg old_vsync;

reg[22:0] count;

reg[3:0] display no;
reg[7:0] display no_ascii;

wire[23:0] line;
char_string_display char4(clk, hcount, vcount, line, display no_ascii, top_left x, top left y);

111

defparam char4.NCHAR = 1;
defparam char4. NCHAR BITS =1;

always @(posedge clk)
begin
if (reset)
begin
count <= 0; //set count to 0
display no <= 0;
timer ip <= 0;
timer rgb <=0;
end
old_vsync <= vsync;

if (start_game) //if game has started do this every cycle

begin
if (count == 23'd6480000) //if 0.1 second has passed
begin
count <= 0;
if (display no == 4'd9) //reset no to 0
display no <=4'd0;
else display no <= display no + 1; //else increments
end
else count <= count +1;
end

//if within boundaries
if ((hcount >=top_left x) && (hcount <=top left x + 19) && (vcount >=top left y) && (vcount <=
top_left y+24))
timer _ip <= 1;
else timer_ip <= 0;

if (timer_ip) //determines what to display
begin
case (display_no)
4'd0: display no_ascii <= 8'b00110000;
4'd1: display no_ascii <= 8'b00110001;
4'd2: display no_ascii <= 8'b00110010;
4'd3: display no_ascii <= 8'b00110011;
4'd4: display _no_ascii <= 8'b00110100;
4'd5: display_no_ascii <= 8'b00110101;
4'd6: display_no_ascii <= 8'b00110110;
4'd7: display_no_ascii <= 8'b00110111;
4'd8: display_no_ascii <= 8'b00111000;
4'd9: display no_ascii <= 8'b00111001;
default: display no_ascii <= 8'b11111111; //default case
endcase
timer _rgb<= line;
end
else timer_rgb <= 24'b0;

end

Endmodule

module timer(clk, reset, hcount, vcount, top left x, top left y, limit, vsync, start game, timer_ip,

timer rgb);

input clk;

input reset;

input[10:0] hcount;

input[9:0] vcount;

input[10:0] top_left x; //position of left top corner of box
input[9:0] top_left y;

input[12:0] limit; //limit to count towards
input vsync;

input start_game; //if game has started
output timer_ip;

output[23:0] timer rgb;

reg[23:0] timer_rgb;

reg timer_ip;

reg old_vsync;

reg[12:0] count;

reg[3:0] display no;
reg[7:0] display no_ascii;

determines what to display

wire[23:0] line;

char_string_display char5(clk, hcount, vcount, line, display no_ascii, top_left x, top_left y);
defparam char5S.NCHAR = 1;

defparam charS.NCHAR_BITS = 1;

always @(posedge clk)
begin
if (reset)
begin
count <= 0; //set count to 0
display no <=0;
timer_ip <= 0;
timer_rgb <= 0;
end
old vsync <= vsync;

if (start_game && old_vsync && ~vsync) //if game has started and frame refresh
begin
if (count == limit) //if count has reached limit
begin
count <= 0; //reset count to 0
if (display_no == 4'd9)
display_no <= 4'd0;
else display_no <= display no + 1;
end
else count <= count +1; //else increments

112

113

end
//if within boundaries
if ((hcount >= top_left x) && (hcount <=top left x + 19) && (vcount >=top left y) && (vcount <=
top_left y +24))
timer _ip <= 1;
else timer ip <=0;

if (timer _ip)
begin
//determines what to display
case (display_no)
4'd0: display no_ascii <= 8'b00110000;
4'd1: display _no_ascii <= 8'b00110001;
4'd2: display no_ascii <= 8'b00110010;
4'd3: display no_ascii <= 8'b00110011;
4'd4: display no_ascii <= 8'b00110100;
4'd5: display no ascii <= 8'b00110101;
4'd6: display no_ascii <= 8'b00110110;
4'd7: display no_ascii <= 8'b00110111;
4'd8: display no_ascii <= 8'b00111000;
4'd9: display no_ascii <= 8'b00111001;
default: display no_ascii <=8bl11111111;
endcase
timer rgb<= line;
end
else timer_rgb <= 24'b0;

end

Endmodule

module title(clk, reset, hcount, vcount, vsync, title_ip, title rgb);

input clk;

input reset;
input[10:0] hcount;
input[9:0] vcount;
input vsync;

output title_ip;
output[23:0] title rgb;

reg[23:0] title_rgb;
reg title ip;

wire[23:0] line;

char_string_display char3(clk, hcount, vcount, line,
112'60100100001000001010000110100101101000101010100100010011101010011001000000101010001
010010010000010100100101001100 , 11'd350, 10'd40);

114

defparam char3.NCHAR = 14;
defparam char3.NCHAR BITS =4;

always @(posedge clk)

begin

//if within boundaries

if (hcount >= 340) && (hcount <= 590) && (vcount <= 70) && (vcount >= 30))
title ip <= 1'bl;

else title_ip <= 1'b0;

//display line or white background

if (title_ip)
title_rgb <= (line == 0) ? 24'h222222 : line;

else title rgb <=24'h222222;

end

endmodule

//

/l File: zbt 6111.v

// Date: 27-Nov-05

/I Author: 1. Chuang <ichuang@mit.edu>

/

// Simple ZBT driver for the MIT 6.111 labkit, which does not hide the

// pipeline delays of the ZBT from the user. The ZBT memories have

// two cycle latencies on read and write, and also need extra-long data hold

// times around the clock positive edge to work reliably.
//

s

// Tke's simple ZBT RAM driver for the MIT 6.111 labkit

/

// Data for writes can be presented and clocked in immediately; the actual

// writing to RAM will happen two cycles later.

//

// Read requests are processed immediately, but the read data is not available
// until two cycles after the intial request.

//

/I A clock enable signal is provided; it enables the RAM clock when high.

module zbt 6111(clk, cen, we, addr, write data, read data,
ram_clk, ram_we b, ram_address, ram_data, ram_cen_b);

input clk; // system clock

input cen; // clock enable for gating ZBT cycles
input we; // write enable (active HIGH)

input [18:0] addr; // memory address

input [35:0] write_data; // data to write
output [35:0] read_data; // data read from memory

output ram_clk; // physical line to ram clock
output ram_we_b; // physical line to ram we_b
output [18:0] ram_address; // physical line to ram address

inout [35:0] ram_data; // physical line to ram data

115

output ram_cen_b; // physical line to ram clock enable

// clock enable (should be synchronous and one cycle high at a time)
wire ram cen b= ~cen;

// create delayed ram_we signal: note the delay is by two cycles!
// ie we present the data to be written two cycles after we is raised
// this means the bus is tri-stated two cycles after we is raised.

reg [1:0] we delay;

always @(posedge clk)
we_delay <=cen ? {we_delay[0],we} : we_delay;

// create two-stage pipeline for write data

reg [35:0] write data oldl;
reg [35:0] write _data old2;
always @(posedge clk)
if (cen)
{write data old2, write data old1} <= {write data oldl, write data};

// wire to ZBT RAM signals

assign ram_we b= ~we;

assign ram_clk =~clk; //RAM is not happy with our data hold
// times if its clk edges equal FPGA's
// so we clock it on the falling edges
// and thus let data stabilize longer

assign ram_address = addr;

assign ram_data = we delay[1] ? write_data old2 : {36{1'bZ}};
assign read data =ram_data;

endmodule // zbt 6111

	3. Game Logic Modules (Richard Chan)
	5. Output Components
	5.3 Circles Module (Richard Chan)
	6.2.1 Signed/Unsigned Error
	6.2.2 Sprite Resizing Error
	6.2.3 Pixel Localization Delay Error

