Digital Theremin Synthesizer and Visualizer

6.111 Final Project November 15, 2007

Alexander Spicer, Daniel Rodgers, Jeffrey Chang

Project Overview

Functionality of end product:
Musical instrument with Theremin-style input
Audio effects synthesizer
Real-time music visualizer

Should be fun to use and entertaining to watch!

Project Overview, cont.

System inputs:

- Movement of user's hands (while wearing gloves)
- External audio input (e.g., mp3 player)
- Computer keyboard (to select/apply audio effects)

System outputs:

- Playback of music from mp3 player, via speakers
- Tones/effects generated from Theremin input
- Real-time music visualization on LCD monitor

Project Overview, cont.

Our system will have 3 main modules:
Input module

Processes input from the video camera

Audio effects module

Applies audio filters as specified

Visualizer module

Displays position of hands, plus visualization of music

Top-level Block Diagram

Video Processing Module

- Gloves on Hands
 - Red on Right, Blue on Left
- Control pitch range with input switches
- Calculate linear scale for pitch
- Harmonizer system
 - Rounds note to closest note that matches the harmonics of background music. (FFT)

Block Diagram: Audio Effects

Audio Effects Module

Responsible for generating audio given frequency and volume from Theremin

 Four different effects can be added to Theremin audio – Chorus, Flange, Delay, and Reverb

Computes FFT of external audio and stores result in BRAM

Outputs combined audio stream to AC97

Advanced Theremin tone generation
 More realistic tones through additive synthesis.

Block Diagram: Visualizer

Visualizer Module

 Hand positions will be displayed as vertical and horizontal bars on left and bottom of screen, respectively

 The visualizations will take into account the source of the audio (external vs. Theremin), and will also utilize stereo data (left vs. right speaker)

 Extra feature, if time permits: Save screenshot into BRAM for later retrieval

Visualizer Module, cont.

Three different modes that the user can select from:

- Mode 1: "Fire"
 - Uses frequency data from the FFT, pitch varies horizontally, intensity varies vertically, has pixels that gradually drop from the peaks

Mode 2: "Kaleidoscope"

- Primarily depends on volume, rhythmically jumps from one configuration of shapes to another, symmetrical around the center
- Mode 3: "Rainbow Ladder"
 - Primarily depends on pitches detected, vertical position changes with pitch, color changes with time (duration of note)

Timeline and Milestones

Feature	Owner	Date
Bare-minimum working system	All	11/18
Basic audio effects (e.g. echo)	drodgers	11/25
Displaying hand position on screen	jchang1	11/25
Color detection, frequency scaling/centering	aspicer	11/25
Having a functional FFT	drodgers	12/2
One mode with simple visualization	jchang1	12/2
More complex audio filters, or sampling	aspicer	12/2
Additional audio effects (e.g. instruments)	drodgers	12/9
Multiple modes, more complex visualizations	jchang1	12/9
Harmonizer (discretizing input to match)	aspicer	12/9
Final report and presentation	All	12/12

Thank you!

