

Virtual Postcard
SystemJess Barber and AJ Meyer

6.111 Final Project Fall 2007

Overview:

 An augmented reality system for creating “virtual
postcards”
 Camera takes in video of blank postcards
 System tracks position and motion of postcards by
detecting corners
 System transforms a saved image to “fit on” the
postcard
 Video output shows postcards with saved image
apparently printed on its surface

System Overview: Block Diagram

Video Processing

 Input is hsync, vsync, field, and downsampled pixel
(Y'CbCr) values from the camera
 Converts to RGB values (as in Color Space Converter
document)
 Produces alpha blending values (based on chroma key
value set manually on labkit)

Vertex Tracking
 On enable, primary corner detection scans image and
locates at least three vertices, sends these coordinates to
corner logic
 Corner logic determines which corner is top right, top left,
bottom right, bottom left vertex (extrapolates position of
fourth corner if necessary)
 Secondary corner detection keeps vertex positions up-to-
date and keeps track of which vertex is which (taking into
account previous coordinates of vertices)

Vertex Tracking Diagram

Grid Interpolate Diagram

Transforming the Bitmap
From vertices, generate 4 lines of the form Ax+By+C=0
 For each hcount,vcount:

Check if the point is interior to quadrilateral
 If no, output [255,255,255]
 If yes, find the point distance from bounding lines:

 di = (Aix0+Biy0+Ci)/sqrt(Ai^2+Bi^2)
 X = da*xmax/(da+dc)
 Y = db*ymax(db+dd)

A

B

C

D

What about that
sqrt term...?

Note on Interpolation

Usually, it would be necessary to interpolate over skewed
regions

By storing a rectangular bitmap whose minimum dimension
is greater than the maximum screen dimension (diagonal),
it is never necessary to interpolate to a higher resolution

Geometric transformations such as scale, rotation, and
perspective are done in the REAL WORLD and are
reflected by the change in vertices!

ITS NOT NECESSARY TO PERFORM MATRIX
OPERATIONS

Alpha Blending
Naiive Chroma key can look choppy and jagged along
edges

Chroma key generates an 8 bit value for every pixel
Target Color = [Rt,Gt,Bt] = Pt Input Pixel = [R,G,B]

= Pi
1 - Pt dot Pi = E gives a heuristic for how close we

are to our target

alpha is piecewise:
255, E < Tlow
k*E, Tlow < E < Thigh

 0, E > Thigh

Were effectively Mux'ing between the original image and
the transformed bitmap, but interpolating along some
threshold!

Pixel Out = (255-alpha)*Pi + alpha*Pnew (Pnew is our
transformed bitmap)

Possible Augmentations
 Multiple index cards
 Overlapping cards
 Selecting between multiple bitmaps

Timeline
 Before Thanksgiving – Jess: accurately detect four
vertices (debug w/video out; AJ: generate transformed
image “grid” given four vertices
 Nov. 30: Coherent system: alpha blending, timing issues
allow a functional system
 Dec. 7: All bugs worked out (i.e. Output looks good,
system is robust) and if time, augmentations added

