
Checklist of Team 12: Termanator 
Donald Eng, Rodrigo Ipince, Kevin Luu 
 
 
Note: basic features are marked by numbers. More advanced features are marked by *, which means that 
these goals will improve the game, but not in an absolutely necessary manner. 
 

1. Devices 
 
1.1. Shaker 

1.1.1. Physical Implementation of Shaker (constructed by Donald) 
1.1.2. Converting shaker’s level signals into pulses (written by Kevin) 
1.1.3. Converting time difference between consecutive pulses into predefined power level (written by 

Kevin) 
1.1.4. Implement moving average filter to accompany extraneous pulses (written by Kevin) 
1.1.5. Display of Power Sprite Bar on XVGA, corresponding to shaker’s intensity (written by Kevin) 
 

2. Inputs 
 
2.1.  Video Input 

2.1.1. Modification of NTSC-to-ZBT module to down sample 24-bit color (8-bits each) to 18-bit color (6-
bits each) (Modification to Full Motion Dance Machine’s module by Kevin) 

 
2.2.  Video Processing 

2.2.1. Implementation of Color Space Converter, from YCrCb to RGB (written by Kevin) 
2.2.2. Implementation of Color Space Converter, from RGB to HSV* (written by Kevin) 
2.2.3. Implementation of frame filter 

2.2.3.1.  Filter pixels that falls within the set threshold (written by Kevin) 
2.2.3.2.   Determine the frame that encloses the detected marker (written by Kevin) 

2.2.4. Implementation of pointer calculation 
2.2.4.1.  Calculate ongoing average of x and y position to determine center of mass for detected 

marker (written by Kevin)  
 
3. Game Play 
 
3.1.  Creature motion 

3.1.1. Random number generator to choose new paths for creatures (written by Rodrigo) 
3.1.2. Show creatures moving down paths and reappearing on new ones (written by Rodrigo) 
3.1.3. Change creature speed as frame rate varies (used to increase game’s difficulty) (written by 

Rodrigo) 
3.1.4. Have the number of active creatures at any point in time be variable* (written by Rodrigo) 
 

3.2.  Projectile motion 
3.2.1. Show a few moving projectiles and how their trajectory and speed depend on the position of 

the pointer and the power, respectively (written by Rodrigo) 
3.2.2. Have projectiles correctly determine whether they collide of not with each creature (written by 

Rodrigo) 
 

3.3. Game logic 
3.3.1. Increase frame rate as time progresses (written by Rodrigo) 
3.3.2. Show collision logic that determines whether a collision is valid or not (written by Rodrigo) 
3.3.3. Logic for starting, pausing, and ending the game (written by Rodrigo) 

 
4. Graphics 
 
4.1.  3D to 2D transforms 

4.1.1. Sprite Scaling: the sprites should be scaled in size depending on their Z locations (smaller farther 
away, larger close up) (written by Donald) 



4.1.2. Sprite Positioning: the sprites should be located according to a perspective depending on their Z 
locations (scaling X Y and normalizing) (written by Donald) 

 
4.2.  Sprite Drawing 

4.2.1. Display Sprites from RAM/ROM: an original *.bmp should be displayed on the XVGA through the 
RAM/ROM through some file parsing 

4.2.2. Animate Sprites Walking: show a basic loop animation based on Z for a sprite walking down a 
path (written by Donald) 

 
4.3.  Sprite Pipelining 

4.3.1. Screen shifting: pipelining the circuit should screen shift pixels, show the shifting and the 
corrective shifting (written by Donald) 

 
5. Miscellaneous 

5.1. Background sound and sound effects (written by All) 


