Bryan Morrissey – Hardware Interface and Data Acquisition System

Non-Verilog Tasks:
- Output Pulse Amplifier
- Delta-Sigma Interface Circuitry (12 Channels)
- Ultrasonic Transducer Arrays: Transmit Array, Receive Array

Verilog Modules:
- FSM for interface control logic
 - output pulse trigger
 - subsystem timing
 - threshold control
 - ready/wait signals for other blocks
- Output Pulse Generator
 - optional variable timing, variable pulse width (number of 40kHz cycles per pulse)
- ADC and Data Acquisition Logic
 - Sync and Feedback latches
- Waveform reconstruction
 - converting 1-bit 27MHz signal into multi-bit 1MHz signal
 - Initial LPF and DC bias compensation
- IIR High Pass Filter – low-order filter for DC component blocking
- FIR Low Pass Filter – block 1MHz sampling/quantization/aliasing noise
- Zero crossing detector – convert multi-bit signal to one-bit signal
 - Optional feature – adjust threshold to compensate for stronger/weaker reflections
- BRAM Data Buffer – 12-bit x 32K
 - buffer 1-bit datastream from 12 receiver channels
 - store up to 32,768 samples at 1MHz sample rate (30Hz refresh rate: 33.3 ms/cycle)
 - one read port for signal analysis block
 - one write port (optional read/write to access raw data for debugging)
- Optional Components (If time allows)
 - RS-232 serial interface to access raw data
Alternate video display mode to visualize raw transducer data

Zhen Li – Signal Analysis System

Basic Functions:
- Wave Package Detector
 - Read bit stream from BRAM and determine the boundaries of reflected wave packages appropriately
 - Input: BRAM, start; output: (t1, t2) (can be shown on LED display), done

- Direction Sweeper
 - Read a single wave package and extract the angle information (inter-receiver delay dt) from it.
 - Input: BRAM, (t1, t2) from Wave Package Detector, start; output: dt (can be shown on LED display), done

- Coordinate Retriever
 - Calculate distance r and angle cos(θ) from t1, t2, dt; then convert the coordinates into (x,y)
 - Divider and square-root modules can be checked separately
 - Input: t1, t2, dt, start; output: (x,y) (can be shown on LED display), done

- Parameter Manager
 - Normal mode: provide coefficients (a1,b1,a2,b2)
 - Calibration mode: calibrate coefficients (a1,b1,a2,b2) from a set of (t1, t2, dt)’s
 - Input: t1, t2, dt, start; output: (a1,b1,a2,b2) (can be shown on LED display), done

- Controller
 - Signal each block to start, and receive done flag from each block
 - Communicate with the other two systems
 - Input: start signal from Hardware Interface and Data Acquisition System, a set of done's from each internal block; output: done signal for Display and User Interface System, and a set of start's for each internal block (can be shown on LED display)

Improvements (if time permits...):
• Width of objects
 o Direction Sweep extracts the width (tw) of the peak, and Coordinate Retriever estimates the width of the object from (t1, t2, dt, tw)
 o Calibration on the width calculation
 o It's a modification of Direction Sweep, Coordinate Retriever, and Parameter Manager.

• Multi-object Recognition
 o Retrieve more than one object from one wave package, i.e. at the same distance r
 o It's a modification of Direction Sweeper, Coordinate Retriever

Brian Wong – Display and User Interface System

Data processing
• Double-buffering (if necessary)
 o Use ZBT or BRAM to double-buffer XVGA resolution screen output

• Motion detection module (if time permits)
 o Ability to filter out incoming noise to produce a stable object location
 o Use memory to record object location history
 o Use location history to produce object average speed estimation every second

• Object representation module
 o Represent object with different speed and color
 o Ability to track object and hold consistent coloring for each object in range
 o Change object size or color based on distance from sensor or object movement

User interface
• Sonar scope layout module
 o Create Java program to convert sonar scope layout into .COE bitmap
 o Initialize data into labkit memory unit (ZBT or BRAM)
 o Draw sonar layout as background on XVGA screen
● Text display module
 ○ Display angle and distance estimation data for each object
 ○ Display speed estimation data for speed vector
 ○ Display basic system setup such as scan rate and audio pulse frequency on screen
 ○ Able to float text to the side of each object

● Vector generation module (if time permits)
 ○ Take object movement estimation and draw vector
 ○ Change proportional vector size based on the speed magnitude
 ○ Locate object vector intelligently next to object in range

● Sound generation module (if time permits)
 ○ Generate sonar detection indicator sound if objects are detected in range
 ○ Generate warning siren if object is too close to sensor or is moving in certain direction or speed exceeds threshold

● Sweeping sonar line module
 ○ Generate a sonar scope sweeping line that rotates around the scope center
 ○ Create an alpha-bending effect such that there is a trailing edge on screen
 ○ Interact with sound generation module to produce a sonar “ping” when line intersects with an object on screen (if time permits)

Testing and Debugging

● Calibration module
 ○ Provide a simple interface for calibration sonar sensor
 ○ Display calibration data on screen

Improvements

● Motion recording module (if time permits)
 ○ Record object location in memory
 ○ Provide basic playback mode for to display object movement on screen