
6.111 DIGITAL DESIGN
SUPER FPGA BROS

Douglas Albert

Kevin Marengo

Overview

 Project Description

Objective

 Descriptive Overview

 Technical Description

 Project Timeline

 Q & A

Project Description

 Overview

 Input is provided by user gestures, initially upper body

to be later expanded to legs as well

Game world is provided by predefined levels and

include obstacles and environmental hazards

 Potential Additions

 Scoring & Time Tracking

 2 player competitive “ghost” mode

 Dynamic representation of player character

High Level Block Diagram

Camera Capture &

Gesture Recognition
Game Logic

Audio

Output

Video

Output

Gesture

Information

Game Events

Video Capture & Gesture Recognition

Video Decoder

from

camera YCrCb to RGB
conversion

ZBT RGB to HSV
decoder

to
monitor

Averager Jump/Crouch
Left/Right

Logic

Velocity

Calculator

walk/run/

no movement

stand/jump/crouch
left/right

Video Input

Output to Game Logic

 Camera captures the player’s
movements and they are stored in
the ZBT

 Each color’s position is averaged to
find the center of mass

 Position used to determine direction
and action

 Velocity of arm patch used to determine
walk vs. run

 The actions are output to the Game
Logic

Gesture Recognition

Line Threshold
Calculator

Init,
Video
Input

Y-position

Lines

Game Cartridge/ Main Logic

 Implement a 2D Game “engine” in hardware

 Abstract away controls and audio output

 Camera capture and gesture module passes input

signals here

 Event signals triggered in the engine can trigger audio

outputs

Game Cartridge/ Main Logic

Game Engine

 Level Creator

 Writes current level layout to Frame Buffer

 Tile ROM

 16x16 tiles to create graphics with

 Level ROM

 15 x 256 x

 Levels are made up of tiles

 Blob RAM

 Holds information about actors on screen: enemies, items, etc.

 FSM & Processor

 Collision detection & enemy movement behavior

In-Game UI Mockup

Fra
m

e

Graphics

 Base entity is 16x16

Mario is 16x16

 Big Mario 16x32

 Store sprites in 16x16

chunks

 Use a framebuffer for

glitchless output

Audio Output

Super Mario
Theme

FLASH Memory

Action Sounds

BRAM

Mixer
AC97

music and
sound

Audio Output

start,
stop

game

events

Inputs to Audio

 The theme music is loaded into the FPGA FLASH memory

 Song loops, starting when the game starts and ending when the
player dies or completes a level

 Action sounds like jumping are stored in a BRAM

 Game events from the Video Output and Game Logic Output
trigger these action sounds

 Theme music and action sounds are combined in the mixer
and output as sound via the AC97

Project Timeline & Milestones

 Planning is complete, now to implement

 Major Milestones

 Rudimentary Game Logic & Functionality

Graphical Overhaul and Gesture Control

 Audio Overhaul and Scoring Functionality

 If we have time

 2 player competitive race

 Additional levels & Items

November 2009

SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30

Design Presentations

Implement Basic Game Logic

Video Output

Camera Capture

Gesture Recognition

Sprite Generation Audio Output

Initial Debugging

December 2009

SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY

1 2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30 31

Project Checkoff

Implement Additional Functionality
Initial Debugging

Questions and Discussion

