

BELLAGIO FOUNTAIN SIMULATION George Rossick • Allen Yin • Joseph Lane

PROJECT DIAGRAM

Objective: Create an entertaining simulation of the Las Vegas Bellagio fountains including real-time audio characterization, realistic physical interactions, and a 3 dimensional graphical environment.

AUDIO PROCESSING

- Objective
 - Generate fountain behavior and appearance based on audio features.
- Audio features
 - Amplitude
 - Frequency
 - Beat
 - Overall Energy
- Fountain Characteristics
 - Ball color
 - Speed and direction
 - Position

BALL GENERATOR

• Converts magnitude, frequency, beat and total energy to fountain behavior

- Magnitude \rightarrow Ball speed
- Frequency \rightarrow Fountain
- Beat \rightarrow Ball color (songs with beat)
- Total energy \rightarrow Ball color (songs without beat)

^{*27}Mhz clock and reset signal to all modules

AMPLITUDE AND FREQUENCY

- 128 point FFT: time domain \rightarrow frequency domain
- Magnitude module converts real/imaginary values to signal magnitude

BEAT AND TOTAL ENERGY

• Beat detection

- Time domain simple to implement, great for instrumental. Sensitive to noise and vocal energy
- Frequency domain more complicated, robust to vocals and noise.
- Low freq, < 350Hz High freq, > 1000Hz
- Instantaneous energy > C*average energy \rightarrow beat
- Use rolling averages over 46 samples of 1024 values

• Total Energy

- For songs without clear beats: classical, a cappella
- Sum over all magnitudes

AUDIO PROCESSOR DIAGRAM

Audio Processor

*27Mhz clock and reset signal to all modules

PHYSICS ENGINE

• Model the physical interactions between balls

- Gravity
- Collision Detection
- Collision physics calculations

CENTRAL MEMORY UNIT AS DATA STRUCTURE FOR BALLS

CMU AS DATA STRUCTURE FOR BALLS

- 1,000 registers represent 1,000 balls
- Each register holds
 - Coordinates
 - Velocity
 - Elasticity Coefficient
 - Time
 - Collision Parameter
 - Status Parameter
- Organization of balls into spacial regions for efficient collision detection
- 15 oldest balls array makes refill easier

COLLISION DETECTION AND PHYSICS CALCULATIONS

COLLISION DETECTION

- After velocity update (including gravity and wall bounce), iterate over each region to find collision between pairs
- Multiple collision detectors allow for parallelism
- Metrics based on distance
- 3-D space required parallel vector detections
- Update the collision parameter accordingly

PHYSICS CALCULATIONS

- In parallel with collision detections
- Post-collision velocity calculations by converting into center of mass coordinates and back
- Only use physics calculators pairs involved in collisions
- Multiple physics calculators allow for parallelism.

3D PROJECTION ONTO A 2D PLANE

• 4 Variables:

- Location that the center of the ball is at
- Location of the camera (center of the screen)
- Angle of the camera
- Location of the viewer
- Determines location of the center of a ball on the screen

DRAWING THE FLOOR ONTO THE SCREEN

Image From http://en.wikipedia.org/wiki/Point_in_polygon

- Project the four corners of the floor onto the screen
- • For each point on the screen draw a ray
- If the ray passes through an odd number of boundaries it is inside the floor otherwise it is outside.

DRAWING AND SHADING

Drawing

- Once we know the X and Y position of each ball on the screen and the distance of the ball from the screen we can draw it
- Z-Buffer: array of the depth of each pixel
- If the old value in the Z buffer for a pixel is greater than the new value the pixel is overwritten

Shading

- Conventional shading methods are too expensive for the number of balls on screen
- Shading done in the YUV color space
- Pre-rendered Y value
- UV determined by audio processing

TIMELINE

Week	Graphics	Physics	Audio
11/16	Particle graphics	2-D model without sorting	128 pt. FFT with Mag.
11/23	Balls	2-D model with sorting	Beat Detection
11/30	Shading	Expand to 3- D and parallelize	Fountain behavior
12/7	Debugging	Debugging	Debugging