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Abstract

The Bellagio Fountain Simulation project aims to produce an accurate simulation of the
Las Vegas Bellagio fountains. Real-time audio processing is used to dynamically create a
visually appealing particle fountain show. Accurate physics modeling control each particle
to provide collisions between other particles and the bounded simulation world. Finally,
graphics render the three dimensional world to realistically display the the visualization on
screen for everyone to enjoy.
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1 Overview

The goal of the Bellagio Fountain Simulation project is to create an accurate and visually
appealing simulation of the Las Vegas Bellagio fountains. The Bellagio fountains are well known
for being an extremely beautiful combination of water, music, and light. The many fountains
spray water hundreds of meters in the air, choreographed to music and lighting effects.

To make the simulation of such an event possible, certain abstractions and simplifications were
made. First, instead of water, the Bellagio Fountain Simulation renders particles on the screen.
The particles can interact with each other and the environment by colliding off of each other
and the wall of the Bellagio world. Second, limited by the performance of the FPGA, eight
fountains instead of hundreds are used to launch individual particles into the air. Finally, unlike
the Bellagio fountains which are pre-choreographed to music, the simulated Bellagio fountains
will respond in real time to audio input from the microphone.

The simulation is divided into four main parts; audio, physics, graphics, and a central memory
unit. The audio system is responsible for processing an incoming stream of audio and generating
particles with features that correspond to different characteristics of the audio signal. For
instance, the initial velocity of the particle is proportional the energy of the audio signal. Once
the particles have been generated by the audio modules, they are written into the central memory
unit. The central memory unit holds all of the on-screen particles, where each particle is a series
of bits representing position, velocity, and color. Once the generated balls have been written to
the central memory unit, they are updated by the physics modules. The main function of the
physics modules is to update the positions and velocities of all on-screen particles. Each particle
is able to collide with one another in a perfectly elastic particle collision, as well as bounce off
of the walls of the surrounding world. Finally, the graphics modules have the responsibility
of displaying each of the balls on the screen at a refresh rate of 30 Hz. Double buffering is
implemented to allow for smooth transitions between frames while three dimensional cues aid
in the visualization of the three dimensional world.
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2 Module Specification

2.1 Audio Design (J. Lane)

The Audio Processing unit was implemented using a series of modules that perform unique
functions to quantify and manage incoming audio signals. Figure 1 shows a chart of the separate
componenets of the system as well as how they are connected to one another [1]. Each of the
modules seen in Figure 1 is described in detail in the following sections.

Figure 1: Block Diagram of Audio System

2.1.1 AC97 Codec

Analog audio signals first pass through the AC97 audio codec that is included as part of the
lab kit. Inside of this module is an analog signal amplifier and an analog to digital converter.
The audio signal is first amplified before entering the analog to digital converter. The analog
to digital converter samples the audio signals, producing 18 bits samples at a rate of 48 kHz.
A ready signal is given once each sample has been completed. In this design, only the most
significant 8 bits of the sampled audio data are passed on to the next module. While it is
possible to utilize all 18 bits of the sampled audio data, including this additional resolution is
not necessary for computing relative energy levels of the audio signal.

2.1.2 Fast Fourier Transform (FFT)

The FFT module serves to translate the 8-bit digital audio signal from the time domain into
the frequency domain. To do so, the FFT efficiently computes an N -point Discrete Fourier
Transform. N was initially chosen to ensure high performance of the beat detection module.
Audio associated with musical beats typically occurs in the range of 20-400 Hz. As such, the
beat detection module should only consider audio produced in this frequency range. An N
value of 128 provides a frequency resolution of 375 Hz. This is enough resolution for the beat
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detection module to operate effectively. While a higher point size would provide additional
resolution, selecting a larger point size would increase the space required for the FFT as well
as the complexity of the magnitude and bin manager modules. Addtionally, testing revealed
minimal increases in beat detection performance as a result of greater low frequency resolution.

The FFT module divides the 48 kHz band limited frequency spectrum into 128 uniform bins.
The FFT module was created using Xilinx software. The ready signal from the AC97 Codec
was used as the clock enable signal to the module so that computations were performed only
when there was a new sample. Additionally, the module was pipelined to be able to produce
an output for every 8-bit audio input. The FFT produces a 16-bit unscaled real value, a 16-bit
unscaled imaginary value, and a 7-bit index.

The magnitude of the real and imaginary values indicates the level of the audio within frequency
band that is determined by the index. The frequency band is related to the index by equations
1 and 2.

flow =
samplingrate

N
∗ index (1)

fhigh =
samplingrate

N
∗ (index + 1) (2)

2.1.3 Energy

The Energy module computes the energy, or power, of real and imaginary values produced by
the FFT module. While it is common practice to calculate the magnitude, as opposed to the
energy, of the real and imaginary FFT values, using energy values yielded equal if not better
results within the beat detection and ball generator modules. Additionally, computing the
magnitude of the real and imaginary values requires a square root operation that adds extra
latency to our Energy module and additional hardware in our system. The equation to calculate
the energy of the system is shown by equation 3.

energy = real2 + imag2 (3)

Before entering the Energy module, the 16-bit unscaled real and imaginary values are scaled
by taking the most significant 8 bits. While this operation reduces the resolution of our data,
the decrease in resolution did not appear to have any negative effects during simulation testing.
Furthermore, the result of squaring an 8-bit number is a 16-bit number. Within the Virtex II
FPGA, each configurable logic block contains 4, 4-bit adders making the summation operation
very efficient to implement in hardware.

Computing the energy in this manner requires two clock cycles, one to square the real and
imaginary values and another to add them together. As such, this module is piplined to allow
it to input new FFT values as they are produced. Given two 8-bit values, the resulting energy
is a 17-bit value. Along with real and imaginary FFT values, the Energy module receives the
FFT index which it delays by one clock cycle such the new energy value and the correct index
associated with that energy are outputted at the same time.
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2.1.4 Bin Manager

The function of the Bin Manager module is to combine the energy values from the Energy
module and sort them into their corresponding fountains. The module keeps track of the
average energy value for each fountain as well as the total energy over all fountains for use
by the ball generator and beat detection modules. Since the Bellagio world only contains 8
fountains and there are 128 FFT bins, each fountain is assigned a set of FFT bins. The energy
of the fountain is computed as the average energy over all of its bins. The table below shows
the distribution of bins to the eight Bellagio fountains.

Table 1: Required Energy Assignments and Bit Shifts Per Fountain
Fountain Indices Bitshift

0 0 4
1 1-2 5
2 3-6 6
3 7-10 6
4 11-18 7
5 19-26 7
6 27-34 7
7 35-42 7

Typically, most modern music has a frequency range from approximately 20 Hz up to about 8,000
Hz. Classical music and instrumental music can often extend to about 12,000 Hz. Consequently,
only frequency bins 0 to 42 are assigned to a fountain. This equates to a sufficient frequency
range of 0 to 15,750 Hz.

In order to make the behavior of the fountains robust to noise within the audio signal, the
average energy value for each fountain is computed over 16 samples per bin. Every 16 samples
per bin, the average energy for each fountain is recalcuted. This equates to a new average value
for each fountain every 0.04 seconds. While a running average would have resulted in a more
accurate average at any given instant in time, this simpler method for computing average also
provides an accurate estimation due to the short time between updates.

Since bin manager averages over 16 energy values, each energy value is first bit shifted to the
right by 4 bits. The sum over 16 such values would then equate to their average energy. For
those fountains that contain multiple bins, a further bit shift is needed to compute the average
energy. The number of bins per fountain is purposely a power of two. This makes computing
the average for each fountain a matter of shifting its sum to the right by the correct number
of bits. The number of bit shifts required to compute the average energy is also shown in the
table above.

The average energy of the lowest frequency bin, called bass energy, is wired to the beat de-
tection module along with a bass ready signal that is high for one clock cycle each time a new
average is calculated. Additionally, Ball Generator can request the average energy of each foun-
tain through the use of the fountain index signal. The output energy from the Bin Manager
module corresponds to the average energy for the fountain determined by fountain index.

Along with the individual average energies for each fountain, the Bin Manager module also
maintains the total energy across all eight fountains. This signal is also given to the Ball
Generator module.
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2.1.5 Beat Detection

The Beat Detection module takes in a bass energy value and a ready signal from the Bin
Manager module and outputs a signal, beat, which is given to the Ball Generator module. The
function of the the Beat Detector module is to find peaks within the bass energy values. Each
significant peak is classified as a beat.

The beat detection algorithm contained in the Beat Detection module is very robust and ac-
curate for a wide range of beats occuring in the low frequency range. The algorithm compares
the instananeous bass energy to the average bass energy over roughly the past second in time.
Keeping the average over a time period longer than one second would most likely result in past
beat values being contained within the average, making detection of another beat more difficult.
Taking the average over a time period significantly shorter than one second would result in more
false positive beat detections.

The average energy is computed as a running average. This is performed using a 32 sample
FIFO memory architecture. By holding the past 32 bass energy values, the beat detection
module is averaging over the past 1.1 seconds, a suitable amount of time that was shown to be
very effective for beat detection. If the current bass energy value is greater than the average
bass energy multiplied by a scaling factor, a beat is registered. Testing revealed that for songs
with a very strong beat, a scaling factor of 4 was appropriate. For songs with more subtle beats,
a scaling factor of 2 revealed good results.

The FIFO memory performs the function of keeping track of the oldest bass energy value and
inserting the new bass energy value. Only the new and old energy values are needed to update
the average energy. Thus, with each new sample, the old energy is popped from the FIFO
memory. The calculation of the updated average energy is given by equation 4.

avgi = avgi−1 − old +
new

32
(4)

The division by 32 is computed as a right bit shift by 5 bits. In this manner, the updated
average energy can be computed in a single clock cycle with the entire beat detection algorithm
taking only two clock cycles per input sample.

2.1.6 Ball Generator

The Ball Generator module takes as input individual fountain energy values, the total energy
over all eight fountains, as well as a beat signal from the Beat Detection Module. The function
of Ball Generator is to compute and write to memory new ball features that are related to the
input signal values. Each ball contains a position and velocity in three dimensions as well as
a color value. The position values are hard coded within the module as the positions of each
of the eight fountains distributed throughout the floor of the Bellagio world. The direction of
the fountain is given by the x and y velocities. These values are initiliazed to 0, resulting a
launch direction that is straight up into the air. The vertical z velocity is proportional to the
fountain energy. Thus, if the audio signal contains a lot of energy within a frequency range, the
corresponding fountain will launch ball very high into the air.

The color of each ball is determined by either the beat signal calculated by the Beat Detection
module or the total fountain energy. As input to the Ball Generator module, the use beat
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signal controls which value determines the color. If the use beat signal is high, then the color
determined by the presence of a beat. If there is currently a beat, the color is given a different
value than if there is not a beat. If the use beat signal is low, then, the color is determined
by the total fountain energy. In the current implementation, the use beat signal is tied to a
switch on the labkit. Thus, for songs with a strong beat, the user can select to change the color
of the balls with the beats of the songs. Conversely, for songs without a clear beat, the color of
the balls can be selected to be determined by the total energy of the fountains.

Once the position, color, and velocity of each ball has been determined, the Ball Generator
module writes the new ball value into main memory. Thus, as output from the module there are
write enable, address, and data values corresponding to bram wea, bram addra, and bram ina
signals respectively. An additional write done signal is outputted to indicated when the Ball
Generator module has finished writing to memory.

2.1.7 Ball Divider

The Ball Divider module performs the function of telling the Ball Generator module when to
write new balls into memory. The modules gives a go pulse 15 times a second. This is achieved
through the use of a counter to keep track of how many 27 MHz clock cycles have passed. Each
time the counter reached 27,000,000

15 , the go signal is high.

2.2 Central Memory Unit (J. Lane)

The Audio, Phsyics, and Graphics modules communicate through a central memory constructed
using dual-port BRAM. BRAM was chosen to provide enough memory to store a significant
number of ball features while also supporting two read or write operations on the same clock
cycle.

Each ball consists of a position vector, a velocity vector, and a color value. The position vector is
composed of three signed 18-bit values representing x, y, and z positions. Likewise, the velocity
vector is composed of three signed 18-bit values representing the x velocity, y velocity, and z
velocity. Color is limited to 3-bits, providing 8 different color combinations for each ball.

All of the features combined produces a string that is 111 bits long. Four, 32x512 blocks of
BRAM were wired together to produce a single block of size 128x512, providing the system
with enough memory to store 512 individual balls. Figure 2 shows the layout of each element
inside of the BRAM module [2].

Figure 2: Single BRAM element

Communication to the central memory unit was controlled using timing signals and the dual
port capabilities of the BRAM. The ball generator module writes to the BRAM once every
15 frames and otherwise does not interact with the BRAM. Thus, it requires write access to
the BRAM but does not require read access. On the other hand, the physics module requires
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both read and write access to the BRAM. In the case that the ball generator module writes
to the BRAM, the phsyics calculations are constrained to operate after the ball generator has
successfully written to the BRAM. Finally, the graphics modules need only to read values from
the BRAM. They can do so at any time and do not need to wait for either the audio or physics
modules to complete their operations.

Port A of the BRAM was assigned to the audio and physics modules for their read and write
operations. To enforce the timing constraint described above, the ball generator module outputs
an enable signal, complete, indicating that it has finished writing to the BRAM and that it is
safe to now read and write through Port A. Port B is assigned to the graphics module as a read
only port, allowing the graphics modules to read from the BRAM at any time.

2.3 Physics Engine (A. Yin)

The physics engine module handles all of the collision calculations, position and velocity updates
of the balls in the simulation. Every frame the physics engine would decide whether any balls
are colliding or bouncing off walls and update their position and velocity accordingly. The
Physics Engine interacts mininally with the rest of the system and its ports are:

• bram wea, write enable for the BRAM which stores all of the ball information.

• bram addra, the address of the BRAM which the Physics Engine needs to read from or
write to.

• bram ina, the inputs of the BRAM to which the Physics Engine writes.

• bram outa, the outputs of the BRAM from which the Physics Engine reads.

• enable, signal from the graphics module notifying it that the graphics module has finished
extracting a frame’s information and physics calculation can resume.

The function of the Physics Engine then requires a defined simulation environment, an im-
plementation of each individual ball objects, and a state machine for iterating through all of
different balls and stages of calculation.

2.3.1 The World

Because our project aims to produce a simulation of the physical Bellagio fountains, we need
to define our simulation environment and coordinate system with similar proportion. Our
simulation environment, or world, is scaled from a 100x100x100m3 cube. When looking into
the screen, the horizontal is the x-axis, vertical the z-axis, and the vector coming out of the
screen is the y-axis of our world’s coordinate system. Further, the coordinate system is signed,
meaning the exact center of our cubic world is the origin, and each of the x, y, and z-axis
stretches from -50 to 50m. Further, the six sides of our world-cube is modeled as a wall from
which the balls can bounce.

Both position and velocity are represented using 18-bit signed values. Values of 18 bits were
chosen in order provide enough resolution during the phsyics computations. Notably, the value
for gravity was very small in comparison to the maximum velocity. Thus, a large nunber of
fractional bits were required to represent gravity and velocity so as not to lose information
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during physical computations. With sufficients amount of BRAM, position values were also
represented using 18-bits. This scheme greatly simplified physics computations while only mod-
erately increasing the amount of memory needed.

2.3.2 Implementation of the Ball Objects

The ball data structure is encapsulated as rows of 128 bits in the dual-port BRAM which
include:

• 18 bits each for the x-coordinate, y-coordinate, z-coordinate of the ball.

• 18 bits each for Vx, Vy, and Vz, the velocity of the ball in each direction.

• 3 bits for the color of the ball.

• 17 bits of filler 0’s which are not processed in computation.

The BRAM has 500 rows representing the 500 balls that we want to simulate. During simulation,
the physics module would read the ball information from the BRAM and update it with the
newly calculated values through one port. After the completed computation for one frame, a
ready signal would notify the graphics module that a new frame of information is ready for
read, which accesses the BRAM from the second port.

2.3.3 The Physics Behind the Simulation

Since our project is a simulation of a physical system, assumptions and calculations about the
physics used in the simulation must be worked out. Our simulation models the water of the
bellagio fountain with spherical balls, thus the nature of the computation is that of projectile
calculation with gravitational effects. Further, to make the simulation more realistic, the balls
are able to bounce off walls and each other in perfectly elastic collisions, thus requiring collision
detection and calculations. The high level steps required for our physics calculations are then:

1. Detection of balls’ collisions with walls.

2. Update balls’ velocities with wall collisions.

3. Detection of ball-to-ball collisions.

4. Update balls’ velocities with ball-to-ball collisions.

5. Update the balls’ positions with their velocities and gravity.

Howver, assumptions can be made about our simulation that can simplify these procedures.
First, the balls’ size are uniform and small compared to the world, meaning that collisions are
rare. This means that when we detect that a ball’s involved with either a wall collision or a
ball-to-ball collision, we can then end the collision detection stage involving that ball, since
most likely it will not be involved in another collision and that we should not waste clock cycles
doing most probable futile calculations.

Further, all of the collisions are perfectly elastic, the balls have the same physical attributes
and are modeled as point masses. Therefore, the usually complicated collision calculation then
reduces to:
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• When a ball bounces off from a wall, the component of its velocity parallel to the collision
is reversed.

• When two balls collide with each other, their corresponding velocity vectors switch [Ref
1].

• During the velocity update of collision detections, gravity subtracted from the z component
of each ball’s velocity.

2.3.4 Physics Engine State Machine

With all of the infracstructure of the engine setup, computation then becomes possible. As
listed in the previous section, physics calculation requires several step, and since our project
requires simulating 500 balls, computational loops are required to iterate through all of them.
The work of iterating and calculating is done by the Physics Engine State Machine.

To iterate through and compare the balls, two index are kept: next ball one index and next ball two index,
which represent the index in the BRAM of the ball currently under calculation and the ball
which is used to compare against the first ball.

When the simulation starts, the state machine starts in the DONE state, in which writing
to the BRAM is disabled next ball one index is set to 0 while next ball two index is set to 1.
Further, in this state no calculation can be run unless the module receives the enable signal
from the graphics module, at which the state transitions to GET BALL 1.

The state will stay in GET BALL 1 for two cycles, which is achieved by a counter ball one count,
since the data from the BRAM becomes available two cycles after the address is specified. In
the second cycle that the state stays in GET BALL 1, the output from the BRAM is stored
in the corresponding registers (i.e. ballx 1 gets ballx out, bally 1 gets bally out, etc). Then
if there are no more balls left after the ball we just read, the state transitions to COLLI-
SION DECTECT WALL. Otherwise, ball one count is reset, bram addra is set to that of
the next ball two index and state transitions to Get BALL 2.

Once transitioned into GET BALL 2, the state machine will also stay there for two cycles for
the same reason it needs to stay in GET BALL 1 for two cycles. This is achieved by keeping
a counter ball two count. In the second cycle in the state, the output from the BRAM is stored
in the corresponding registers (i.e. ballx 2 gets ballx out, bally 1 gets bally out, etc). Then
next ball two index is incremented and the state transitions to COLLISION DECTECT WALL.

In COLLISION DETECT WALL, the state machine checks whether ball 1 (with index
next ball one index -1) is colliding with any wall. If it is, bram wea goes high, bram outa is set to
equal to the updated information of ball 1 and state transitions to COLLIDE WALL. Other-
wise, if ball 1 is not the last ball in the BRAM, the state transitions to COLLISION DECTECT BALL.
If ball 1 is the last ball in the BRAM, however, the state transitions to UPDATE POSITIONS.

In COLLISION DECTECT BALL, the machine checks whether ball 1 and ball 2 are col-
liding by checking whether the difference between their x, y, and z coordinates are less than
2*radius. If they are colliding, the input to the BRAM takes the updated values of ball 1,
bram wea goes high and state transitions to COLLIDE LHC. Otherwise, bram addra is set
to that of the current ball 1, and the input to the BRAM takes the values of the gravity-updated
values of this ball 1 (which is not involved in any collision). Bram wea is then set to high and
state transitions to GRAVITY UPDATE.
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In GRAVITY UPDATE, the machine then disables write into the BRAM (after the writing
has finished). If the current ball 2 is the last ball in the bram and the current ball 1 is the last
ball in the BRAM, then we reset next ball one index=0 and next ball two index=1, bram addra
to 0 and transitions to UPDATE POSITIONS. If the current ball 2 is the last ball in the
BRAM but the current ball 1 is not, then we set the next ball two index=next ball one index+1
and bram addra to the next ball one index and transitions to GET BALL 1.

In COLLIDE WALL, bram wea is set to 0. If there are more balls after the current ball
1, next ball two index=next ball one index+1 and bram addra is set to the next ball one index
and state transitions to GET BALL 1 again. However, if there are no more balls after the
current ball 1, then we must have checked all of the balls and pairs for collision and thus state
transitions to UPDATE POSITIONS.

The state stays in COLLIDE LHC for 4 cyles. The first two cycles to finish writing ball 1’s
updated information the BRAM and the second two cycles to write ball 2’s updated information
into the BRAM. This is achieved by a counter write lhc count which incrmenets every cycle.
Nothing happens in the first cycle, the machine just waits. In the second cycle, we give the
BRAM the post-collision information of the updated ball 2, set bram addra to that of the
current ball 2. In the third cycle, we wait again. In the fourth cycle, write has finished
for the second ball; we set disable write to the BRAM, and depending on whether there are
more balls after the current ball 1, state either transitions to GET BALL 1 after setting
next ball two index=next ball one index+1 and bram addra set to the next ball one index, or
UPDATE POSITIONS after setting next ball one index=0 and next ball index=1.

The state machine arrives the UPDATE POSITIONS state when all collision detection and
calculation has finished. The only thing left to do to finish the given iteration of physics
calcuation is to update each ball’s positions. This is done by setting bram addra to the index
of the ball that needs to be modified and the inputs to be the updated ball information. The
state then transitions to WRITE POSITIONS.

The state machine stays in WRITE POSITIONS for two cycles because it takes two cycles
from the specification of a BRAM address to when data is written into that BRAM address.
In the second cycle the machine stays in this cycle, writing into the BRAM is disabled. If the
current bram addra is that of the last ball in the bram, we’re done and state transitions into
DONE. Otherwise, we have more balls to update, thus bram addra is incremented and state
transitions to UPDATE POSITONS.

Note the use of next ball one index and next ball two index as ways of keeping track of the
balls under comparison and calculation. next ball one index is incremented in GET BALL 1
while next ball two index is incremented in GET BALL 2. In this way, the state machine can
efficiently iterates through all of the balls.

Further, notice that under each iteration with a given ball 1, only one collision can happen to
that ball 1 (wall collision or ball-to-ball collision). This is consistent with our physics assumption
that the balls are small compared to the world and a ball involved in two collisions is unlikely.

The behaviors described above are translated into the Physics Engine State Machine state
transition diagram, shown below.
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Figure 3: Physics Engine state mahcine transition diagram

2.4 Graphics (G. Rossick)

This module takes the data calculated by the first two modules and creates a graphical rep-
resentation of the scene. We use a modified version of raster graphics to accomplish our goal.
Since a ball just looks like a circle from every angle with proper shading we can create the
illusion of a 3D scene without actually taking the processing power to render 3D. The ball data
is read by the projection module from the bram. The projection module then converts the 3D
representation of a ball into a 2D pixel value on the screen. Next the shading module takes the
location of the center of the ball calculated by the projection module and draws a ball around
it. Meanwhile the floor module calculates which pixels are part of the floor. All of this data is
fed into the displayFSM which writes it to the ZBT using a double buffer technique. One of the
ZBT memories is written to with new pixel data while the other is used for displaying from.

2.4.1 DisplayFSM

The displayFSM module writes pixel values into the ZBT memory. The module takes floor
and ball positions, depths, and colors in order to output an x and y location as well as a color
to write into the memory. It consists of 3 different states: cleaningBuffer, waitForInput, and
writing. Every time newFrame goes high, the state instantly switches to cleaningBuffer. In
this state, all locations in the writing buffer and the zbuffer are set to initial values. For the
writing buffer this means all color locations for each x and y location on the screen are set to
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Figure 4: Graphics System Block Diagram

0. In the zbuffer each bit is set to 1 at each address. Once this task is complete the Display
FSM switches to waitForInput mode. Here the FSM waits for either the floorValid or ballValid
signals to go high. When they do, the data for the valid pixel type is latched into registers, and
a floorAccepted or ballAccepted signal is sent as an output to the floor or shading module. The
FSM then moves into the writing stage where the current depth value is checked against the
value in the zbuffer. If the current value is smaller, the new pixel is written into the ZBT and
the new depth is written into the zbuffer. The state then switches back to waitForInput. This
cycle continues until there are no more pixels to write or the next frame starts. At that point
the state returns back to cleaningBuffer.

Figure 5: Display FSM State Machine

2.4.2 sramController

The sramController sets up a double buffer system that designates one ZBT memory as the
display buffer and one as the write buffer. Every time there is a new frame and the flip signal
goes high these memories swap roles. Each pixel has a location in memory equivalent to its y
coordinate followed by its x coordinate. In that location 24 bits of color data is stored. Every
clock cycle the color data corresponding to the write x and write y inputs is written into the
write buffer. Since the ZBT writes data into the memory two clock cycles after its write enable
is triggered, all writes must be delayed for 2 clock cycles In addition, every clock cycle the values
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input on the read x and read y locations are set as the address of the display buffer. Two clock
cycles later the color value for those pixels is available to be sent to the VGA monitor.

2.4.3 Projection

The projection module reads ball data from the central bram that the physics and audio modules
update. It then performs a transform on the x,y, and z coordinates to translate that data into
x and y screen positions with a certain camera location and angle. The projection module
currently uses a simplified version of the projection with the angles all equal to 0. Using 0 for
the angles simplifies all of the sine and cosine calculations to either 0 or 1. This greatly simplifies
the calculation, but limits the possible camera locations. This is all done using combinational
logic and is guaranteed to be completed before the shading module needs the ball values. Every
time the shading module is ready to process a new ball it sets the ready signal to be high. At
this point the projection module increments by one. This process continues until all of the balls
have been processed. When this happens projection module sets the done signal to high and
the bram address to zero. It then waits for the newFrame signal before repeating the process.

2.4.4 Shading

There are two different implementations of the shading module. The first is flat shading. With
this method a circle is drawn around the point supplied by the projection module in a solid flat
color. There was not time to implement the second type of shading using sprites. With this
method there would have been a sprite for each of the 16 radius sizes and 8 ball colors The
shading module would have accessed these sprites and sent them to the displayFSM module.
This would have allowed for much more realistic balls that looked 3D opposed to circles. The
flat shading method was used to create the shading module. It is implemented using a state
machine with 4 different states: initialize, calculateValid, waitForRam, and increment. It starts
in the initialize state and stays in this state until the done signal is low. At this point it latches
new ball values into its registers and sends the ready signal to the projection module to let it
know to start preparing the next ball for processing. Next the module iterates through each
of the pixels within a radius’s distance from the center of the ball and determines if they are
within the ball. xsquared+ysquared¡radius squared is calculated for the current pixel. If it is
pixelValid is set to high and the state changes to waitForRam. In this state the module waits
for the displayFSM to accept the pixel before moving to the increment state. If the pixel is not
within the ball, the state moves directly from the calculateValid state to the increment state. In
the increment state the pixel being examined is moved to the next value. This continues until
all pixels within a radius’s distance of the ball have been checked. The state then moves back
to the calculate valid section to get the next ball’s data and repeat the process. This continues
until the projection module sends the done signal.

2.4.5 Floor

The floor module calculates all of the floor pixels and sends them to the displayFSM. It starts
this process by projecting the corners of the floor onto the screen using the same method as the
projection module. The module then interpolates along the line connecting the corners of the
floor. If a line is drawn through the screen it will either pass through no interpolated points
or exactly two. If it passes through 0 points then there are no floor pixels on this line and the
next line is tried. If it passes through two interpolated points then all pixels between those two
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Figure 6: Shading FSM

points are part of the floor and are sent to the display FSM. The next line is then checked. This
process continues until all lines on the screen have been checked for floor pixels. The module
then waits for the newFrame Signal before starting again.
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3 Testing

3.1 Audio Design (J. Lane)

Modules in the audio system design were tested by simulation through the use of ModelSim as
well as test frameworks measured using a Digital Logic Analyzer. Additionally, prior testing of
audio algorithms was initially conducted through using a sofware implemenation of the module
designs. Aside from difficulties experienced concerning the FFT module, all other modules were
succesfully tested

3.1.1 FFT

The FFT was constructed by the Xilinx software and tested using simpel test framewords and
viewed using a logic analyzer. Tests primarily consisted of using a generated 750 Hz pure tone
as input to the FFT. In this case, the clock enable signal was set to a 48 kHz pulsed signal, the
real input values were set to the high order eight bits of the sine wave data, and the imaginary
input values were set to 0. Outputs from the FFT were viewed using the logic analyzer.

While initial testing of a 128 ans 1024 point FFTs were successful, further testing later on
revealed inconsistent and faulty behavior. FFT modules that were previously valided through
early testing proved no longer functional later in the design process. While FFTs of varying
point sizes were constructed and tested on multiple different lab kits, results were inconsistent
and rarely correct.

At one point in the design process, only a 1024 point FFT module was working. The audio
modules were then redesigned to use a 1024 point FFT instead of a 128 point FFT. However,
the 1024 point FFT also stopped producing valid results after further testing was conducted.

Common issues with FFT outputs were uniform noise distributed throughout the entire fre-
quency spectrum when a pure tone was given as input and the lack of any output at all.

Had early testing revealed the FFT module to be unreliable, there would have been sufficient
time to build a FFT module. As a result of the failure of the FFT module, the entire audio
system was redesigned. Time constraints forced the redesigned system to a much simpler
version. Instead of an FFT, a simple low pass filter was used to extract low frequency audio.
Each fountain’s energy no longer corresponded to a certain frequency but rather the current
bass energy. Balls were launched from consective fountains when the bass audio energy was
above a certain theshold.

3.1.2 Magnitude, Ball Generator, and Bin Manager

The Magnitude, Ball Generator, and Bin Manager modules were all tested through simulation
and the use of a wide range of input signals. Realistic scenarious and data values were given as
inputs to each module and the results were analyzed using ModelSim. ModelSim was unable
to accurately simulate the BRAM memory used by the Ball Generator module. As a result,
a simulated BRAM was constructed using registers for use during simulation while the actual
BRAM was used on the labkit.
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3.1.3 Software Implementation

Before decisions were made on the audio system, a software implementation was created and
tested in the python and C++ programming languages. A non real-time implementation of
the beat detection algorithm was constructed using python and tested on a variety of different
music. Energy values from these tests were then used to validate the conversions between
fountain energy and velocity.

To assist in determining whether these conversions were appropriate, a three dimensional world
was constructed using the C++ programming language and the OpenGL graphical library.
Accurate physics were included in the model to give valuable feedback on the behavior of the
fountains.

Finally, the Bellagio world was constructed to be proportional to the actual Bellagio fountains.
To assist in converting between real world values and Bellagio world values, a converter was
constructed using python. This tool prooved to be extremely valuable for determining constant
values such as gravity and upper and lower position bounds.

3.2 Physics Engine (A. Yin)

3.2.1 Testing of Proposed Design

As one may notice in the desciption of the state machine of our proposed design, bram wea
and bram addra are always set in the state previous to the state in which write read/write is
supposed to happen. This is because of the two-clock cycle delays in the input into and the
output from the bram. This timing issue was troublesome to get right and often produced
unrealistic results in model-sim such as the entries inside BRAM having the same values, the
wrong correspondence of an entrie’s values with its index, etc.

3.2.2 Testing of Implemented Design

In our alternative project, the physics engine updates the balls’ velocities and positions in
parallel. The velocities of the balls under simulation are under the effects of gravity (the y-
velocity, since in this alternative simulation the world’s 2-D, is subtracted in every frame by
gravity). Wall-collision detection is implemented and balls’ velocities reverse appropriately upon
bouncing off walls. However, because of the timing constraint, ball-to-ball collisions detection
and calcuations are not implemented.

The biggest difference in the physics engine of our proposed design and our actual finished
project is the lack of state machine in our actual implemented project. The implemented
project holds the balls in 16 registers, which allow for parallel access. This then effects the
state machine’s architecture designed for sequential interaction with the BRAM. Thus with a
tight timing constraing, we were unable to implement the ball-to-ball collision detection and
calculations.
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3.3 Graphics (G. Rossick)

The projection, shading and displayFSM modules were all tested in ModelSim to ensure they
were functioning properly. In addition the modules were tested graphically using the double
buffer display system to ensure that the modules were displaying properly on the screen. The
major hurdle that we ran into with testing the graphics module was that the entire system was
written in verilog before any testing began. This made it very difficult to test individual parts
because of the complexity of the design. It would have been a much better plan to test as we
went instead of saving all the testing for the end.
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4 Conclusion

Due to the difficulties experienced during testing concerning the FFT module and implemen-
tation of the ZBT double buffer, very little time was avialable for complete system testing.
Consequently, the resulting final project was dramatically simplified over the proposed system
design. The lack of a graphical environment made thorough testing incredibly difficult. The de-
cision to switch to a much simpler graphical environment was made late in the implementation
process when there was not enough time to reconstruct the modules as needed.

More thorough research of the available technologies, such as the IPCoreGen generated mod-
ules, should have been conducted to ensure valid and consistent performance. Although the
FFT module failed to perform correctly, further work to construct a valid FFT module could
serve as a replacement in the otherwise successful set of audio modules. Furthermore, testing
of the complete system, as opposed to individual modules, is important to confirm propoer
communication and compatibility bewteen modules.
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5 Appendix A: Audio Verilog Code

module energy #(parameter N BITS = 8 ,
parameter INDEX BITS = 7 ,
parameter ENERGY BITS = (N BITS∗2) + 1)

/∗ The energy module computes the energy o f the FFT r ea l and
∗ imaginary va l u e s .
∗/

( input wire c lk , r e s e t , new sample , // new sample shou ld be a pu l s e
input wire [ N BITS−1:0 ] xk rea l , xk imag , // ou tpu t s from FFT module
input wire [ INDEX BITS−1:0 ] index , // output index from FFT module
output wire [ INDEX BITS−1:0 ] index out , // de layed index va lue
output reg [ENERGY BITS−1:0 ] energy ) ; // energy

reg [ N BITS−1:0 ] r e a l s qua r ed ;
reg [ N BITS−1:0 ] imag squared ;

synchron ize #(.NSYNC(2) , .NBITS(INDEX BITS) ) index sync ( . c l k ( c l k ) , . in ( index ) ,
. out ( index out ) ) ;

always @(posedge c l k ) begin
i f ( r e s e t ) begin

energy <= 0 ;
// index ou t <= 0;

end

i f ( new sample ) begin

/∗ F i r s t c l o c k c y c l e ∗/
r e a l s qua r ed <= xk r e a l ∗ xk r e a l ;
imag squared <= xk imag ∗ xk imag ;

/∗ Second c l o c k c y c l e ∗/
energy <= rea l s qua r ed + imag squared ;

end

end // always @ ( posedge c l k )

endmodule // energy

module bin manager #(parameter LOGN BINS = 7 , parameter N BITS = 17 , parameter
NUM VALS = 16)
( input c lk , r e s e t ,
input [ N BITS−1:0 ] energy , // energy from FFT at index ”

index ”
input [ LOGN BINS−1:0 ] index , // FFT bin index
input [ 2 : 0 ] f ounta in index , // reque s t ed foun ta in index
output reg [ N BITS−1:0 ] energy out , // energy at the r eque s t ed

foun ta in index
output reg bass ready , // ready s i g n a l f o r bass

energy and b e a t d e t e c t i o n
output wire [ N BITS−1:0 ] bass energy , // bass energy sen t to bea t

d e t e c t i on
output reg [LOGN BINS + N BITS : 0 ] t o t a l e n e r gy // t o t a l energy sen t to b a l l

genera tor
) ;

// Fountain 0 : Ind i c e s 0 : B i t s h i f t 4
// Fountain 1 : Ind i c e s 1−2 : B i t s h i f t 5
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// Fountain 2 : Ind i c e s 3−6 : B i t s h i f t 6
// Fountain 3 : Ind i c e s 7−10 : B i t s h i f t 6
// Fountain 4 : Ind i c e s 11−18 : B i t s h i f t 7
// Fountain 5 : Ind i c e s 19−26 : B i t s h i f t 7
// Fountain 6 : Ind i c e s 27−34 : B i t s h i f t 7
// Fountain 7 : Ind i c e s 35−42 : B i t s h i f t 7

wire [ N BITS−5:0 ] b i t s h i f t e d e n e r g y ;
reg [ 2 : 0 ] my founta in index ;
reg [ 1 6 : 0 ] sum array [ 7 : 0 ] ; // 8 , 17 b i t r e g i s t e r s
reg [ 2 : 0 ] d e l ayed f oun ta in index ;
reg [ 4 : 0 ] counter ; // samples per b in

/∗ Al l va l u e s need to be s h i f t e d by at l e a s t 4 b i t s ∗/
assign b i t s h i f t e d e n e r g y = energy >>> 4 ;

reg [ N BITS−1:0 ] f ounta in0 ;
reg [ N BITS−1:0 ] f ounta in1 ;
reg [ N BITS−1:0 ] f ounta in2 ;
reg [ N BITS−1:0 ] f ounta in3 ;
reg [ N BITS−1:0 ] f ounta in4 ;
reg [ N BITS−1:0 ] f ounta in5 ;
reg [ N BITS−1:0 ] f ounta in6 ;
reg [ N BITS−1:0 ] f ounta in7 ;

assign bass energy = founta in0 ;

/∗ ’Ready ’ to c a l c u l a t the new averages ∗/
wire ready ;
reg de layed ready ;
assign ready = ( counter == NUM VALS) ;

wire c l e a r ;
synchron ize #(.NSYNC(3) , .NBITS(1) ) my updated samples ( . c l k ( c l k ) , . in (

de layed ready ) , . out ( c l e a r ) ) ;

always @ ∗ begin
case ( index )

7 ’ b000 0000 : my founta in index = 3 ’ b000 ; // 0
7 ’ b000 0001 : my founta in index = 3 ’ b001 ; // 1
7 ’ b000 0011 : my founta in index = 3 ’ b010 ; // 2 ,3
7 ’ b000 0111 : my founta in index = 3 ’ b011 ; // 4 ,5 ,6
7 ’ b000 1011 : my founta in index = 3 ’ b100 ; // 7 ,8 ,9 ,10
7 ’ b001 0011 : my founta in index = 3 ’ b101 ;
7 ’ b001 1011 : my founta in index = 3 ’ b110 ;
7 ’ b010 0011 : my founta in index = 3 ’ b111 ;
7 ’ b010 1011 : my founta in index = 3 ’ b000 ;
default : my founta in index = my founta in index ;

endcase // case ( index )

case ( f ounta in index )
3 ’ b000 : energy out = founta in0 ;
3 ’ b001 : energy out = founta in1 ;
3 ’ b010 : energy out = founta in2 ;
3 ’ b011 : energy out = founta in3 ;
3 ’ b100 : energy out = founta in4 ;
3 ’ b101 : energy out = founta in5 ;
3 ’ b110 : energy out = founta in6 ;
3 ’ b111 : energy out = founta in7 ;
default energy out = founta in0 ;

endcase // case ( f oun t a in index )
end
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always @(posedge c l k ) begin
de l ayed f oun ta in index <= my founta in index ;
de layed ready <= ready ;
bas s ready <= delayed ready ;
i f ( r e s e t ) begin

t o t a l e n e r gy <= 0 ;
// energy ou t <= 0;
counter <= 0 ;
sum array [ 0 ] <= 0 ;
sum array [ 1 ] <= 0 ;
sum array [ 2 ] <= 0 ;
sum array [ 3 ] <= 0 ;
sum array [ 4 ] <= 0 ;
sum array [ 5 ] <= 0 ;
sum array [ 6 ] <= 0 ;
sum array [ 7 ] <= 0 ;

end

/∗ Consider on ly va l u e s between 0 and 42 ∗/
else i f ( index < 43 && index > 0) begin

sum array [ d e l ayed f oun ta in index ] <= sum array [ d e l ayed f oun ta in index ] +
b i t s h i f t e d e n e r g y ;

end
i f ( counter == NUM VALS) begin

counter <= 0 ;
end
else i f ( index == 7 ’ b010 1011 ) begin // 42

counter <= counter + 1 ;
end

/∗ Ca l cu l a t e new average va l u e s ∗/
i f ( ready ) begin

sum array [ 1 ] <= sum array [ 1 ] >>> 1 ;
sum array [ 2 ] <= sum array [ 2 ] >>> 2 ;
sum array [ 3 ] <= sum array [ 3 ] >>> 2 ;
sum array [ 4 ] <= sum array [ 4 ] >>> 3 ;
sum array [ 5 ] <= sum array [ 5 ] >>> 3 ;
sum array [ 6 ] <= sum array [ 6 ] >>> 3 ;
sum array [ 7 ] <= sum array [ 7 ] >>> 3 ;

end

/∗ Set new va l u e s to the f oun ta in s and r e s e t summation arrays to 0 ∗/
else i f ( de layed ready ) begin

f ounta in0 <= sum array [ 0 ] [ N BITS−1 : 0 ] ;
f ounta in1 <= sum array [ 1 ] [ N BITS−1 : 0 ] ;
f ounta in2 <= sum array [ 2 ] [ N BITS−1 : 0 ] ;
f ounta in3 <= sum array [ 3 ] [ N BITS−1 : 0 ] ;
f ounta in4 <= sum array [ 4 ] [ N BITS−1 : 0 ] ;
f ounta in5 <= sum array [ 5 ] [ N BITS−1 : 0 ] ;
f ounta in6 <= sum array [ 6 ] [ N BITS−1 : 0 ] ;
f ounta in7 <= sum array [ 7 ] [ N BITS−1 : 0 ] ;

sum array [ 0 ] <= 0 ;
sum array [ 1 ] <= 0 ;
sum array [ 2 ] <= 0 ;
sum array [ 3 ] <= 0 ;
sum array [ 4 ] <= 0 ;
sum array [ 5 ] <= 0 ;
sum array [ 6 ] <= 0 ;
sum array [ 7 ] <= 0 ;

end // i f ( de l ayed ready )
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end // always @ ( posedge c l k )

endmodule // d i v i d e r

module bea t d e t e c t o r #(parameter N BITS = 17) ( input wire c lk , r e s e t , ready ,
input wire [ N BITS−1:0 ] i n s t an t ba s s ene rgy ,
output reg beat ) ;

/∗ The bea t d e t e c t o r module compares the ins tan taneous bea t energy
wi th the average bass energy over the prev ious second . I f the
i n s t an t bass energy i s g r ea t e r than C ∗ the average bass energy ,
then we have a bea t . ∗/

wire [ N BITS : 0 ] c ave rage ene rgy ;
reg [ N BITS−1:0 ] average energy ;
assign c ave rage ene rgy = average energy <<< 1 ;

wire [ N BITS−6:0 ] b i t s h i f t e d i n s t a n t e n e r g y ;
assign b i t s h i f t e d i n s t a n t e n e r g y = in s t an t ba s s en e r gy >>> 5 ;

wire de layed ready ;
synchron ize #(.NSYNC(2) , .NBITS(1) ) index sync ( . c l k ( c l k ) , . in ( ready ) , . out (

de layed ready ) ) ;

/∗ Create a FIFO with 32 samples . The 32 samples equa te s to the prev ious 1.3
seconds o f music ∗/

wire [ 1 1 : 0 ] o ld ene rgy ;
wire complete ;
wire [ 1 1 : 0 ] minus energy ;
assign minus energy = ( complete ) ? o ld ene rgy : 12 ’ b0000 0000 0000 ;
f i f o #(.LOGSIZE(5) , .WIDTH(12) ) my f i f o ( . c l k ( c l k ) , . r e s e t ( r e s e t ) , . wr (

de layed ready ) , . rd ( ( ready && complete ) ) , . din ( b i t s h i f t e d i n s t a n t e n e r g y ) ,
. f u l l ( f u l l ) , . over f l ow ( over f l ow ) , . empty ( empty ) , . dout ( o ld ene rgy ) ) ;

reg [ 4 : 0 ] counter ;

assign complete = ( counter == 6 ’ b10 0000 ) ;

always @(posedge c l k ) begin
i f ( r e s e t ) begin

beat <= 0 ;
average energy <= 0 ;
counter <= 0 ;

end

i f ( ready ) begin
counter <= ( counter < 6 ’ b10 0000 ) ? counter + 1 : counter ;

i f ( complete ) begin
beat <= ( in s t an t ba s s en e r gy > c ave rage ene rgy ) ? 1 : 0 ;

end
end

i f ( de layed ready ) begin
average energy <= average energy − minus energy +

b i t s h i f t e d i n s t a n t e n e r g y ;
end

end // always @ ( posedge c l k )

endmodule // b e a t d e t e c t o r

module ba l l g e n e r a t o r ( input wire c lk , r e s e t , ba l l e nab l e ,
input use beat ,
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input wire beat ,
input wire [ 1 6 : 0 ] f ounta in energy ,
input wire [ 2 3 : 0 ] t o t a l ene rgy ,
output reg [ 2 : 0 ] f ounta in index ,
output wire [ 1 2 7 : 0 ] bram ina ,
output reg [ 8 : 0 ] bram addra ,
output reg bram wea ,
output reg complete ) ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ The b a l l genera tor wr i t e s in t o the BRAM a new b a l l
∗ cons i d e r ing in format ion gained from beat , f oun ta in
∗ energy , and t o t a l energy
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

parameter signed NEG WALL = 18 ’ b10 0001 1110 1011 1000 ; // −47 meters
parameter signed [ 1 7 : 0 ] RADIUS = 18 ’ b00 0000 0101 0001 1110 ; // 0.5 meters
parameter signed [ 1 7 : 0 ] TWO RADIUS = 18 ’ b00 0000 1010 0011 1101 ; // 1.0 meters

reg signed [ 1 7 : 0 ] x in , y in ; // New pos and
v e l o c i t y

wire signed [ 1 7 : 0 ] z in , vx in , vy in , v z i n ;
wire [ 2 : 0 ] c o l o r i n ; // New co l o r
assign bram ina = { x in , y in , z in , vx in , vy in , vz in , c o l o r i n , 17 ’ b0 } ;
// reg [ 1 2 7 : 0 ] bram outa ;

/∗ Each o f the f oun ta in s has a c e r t a i n l o c a t i o n in the world .
∗ The index o f the foun ta in d i c t a t e s the b a l l s x and y po s i t i o n .
∗ Al l o f the b a l l s w i l l s t a r t a t the same z l o c a t i o n .
∗/

/∗ Assign x and y po s i t i o n based o f f o f index ∗/
always @( founta in index ) begin

case ( f ounta in index )
3 ’ b000 : begin x in = 18 ’ b10 0111 0101 1100 0010 ; y in = 18 ’

b00 0011 0011 0011 0011 ; end // (−.77 , . 1 )
3 ’ b001 : begin x in = 18 ’ b10 1110 0110 0110 0110 ; y in = 18 ’

b11 1100 1100 1100 1100 ; end // (−.55 , −.1)
3 ’ b010 : begin x in = 18 ’ b11 0101 0111 0000 1010 ; y in = 18 ’

b00 0011 0011 0011 0011 ; end // (−.33 , . 1 )
3 ’ b011 : begin x in = 18 ’ b11 1100 0111 1010 1110 ; y in = 18 ’

b11 1100 1100 1100 1100 ; end // (−.11 , −.1)
3 ’ b100 : begin x in = 18 ’ b00 0011 1000 0101 0001 ; y in = 18 ’

b00 0011 0011 0011 0011 ; end // ( . 11 , . 1 )
3 ’ b101 : begin x in = 18 ’ b00 1010 1000 1111 0101 ; y in = 18 ’

b11 1100 1100 1100 1100 ; end // ( . 33 , −.1)
3 ’ b110 : begin x in = 18 ’ b01 0001 1001 1001 1001 ; y in = 18 ’

b00 0011 0011 0011 0011 ; end // ( . 55 , . 1 )
3 ’ b111 : begin x in = 18 ’ b01 1000 1010 0011 1101 ; y in = 18 ’

b11 1100 1100 1100 1100 ; end // ( . 77 , −.1)
default : begin x in = 18 ’ b10 0111 0101 1100 0010 ; y in = 18 ’

b00 0011 0011 0011 0011 ; end// (−.77 , . 1 )

endcase // case ( f oun t a in index )
end // always @ ( f oun ta in inde x )

/∗ Assign z v a l u e ∗/
assign z i n = NEG WALL + TWO RADIUS;

/∗ For now , make a l l the b a l l s green ∗/
assign c o l o r i n = 3 ’ b010 ;

/∗ Also f o r now , make the x and y v e l o c i t i e s 0 ∗/
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assign vx in = 0 ;
assign vy in = 0 ;

/∗ Set the launch v e l o c i t y ∗/
assign vz in = ( use beat ) ? {7 ’ b00 0000 0 , f ounta in ene rgy [ 1 6 : 6 ] } : {7 ’

b00 0000 0 , t o t a l e n e r gy [ 2 3 : 1 3 ] } ;

/∗ Simulated BRAM for modelsim ∗/
model bram my bram ( . addra ( bram addra ) , . c l k ( c l k ) , . dina ( bram ina ) , . wea (

bram wea ) , . douta ( bram outa ) ) ;

always @(posedge c l k ) begin

i f ( r e s e t ) begin
bram addra <= 0 ;
f ounta in index <= 0 ;
bram wea <= 0 ;
complete <= 0 ;

end

/∗ new sample . Stop at 500 b a l l s ∗/
i f ( b a l l e n ab l e ) begin

bram wea <= 1 ;
i f ( bram addra > 500) bram addra <= 0 ;

end

/∗ done wr i t i n g a l l new b a l l s to memory ∗/
i f ( f ounta in index == 3 ’ b111 ) begin

bram wea <= 0 ;
f ounta in index <= 0 ;
complete <= 1 ;

end
else complete <= 0 ;

/∗ I t e r a t e through the address ∗/
i f ( bram wea ) begin

f oun ta in index <= founta in index + 1 ;
bram addra <= bram addra + 1 ;

end

end // always @ ( posedge c l k )

endmodule // b a l l g e n e r a t o r

/∗
∗ Simulat ion BRAM
∗/

module model bram #(parameter LOGSIZE=9, WIDTH=128)
( input wire [ LOGSIZE−1:0 ] addra ,
input wire c lk ,
input wire [WIDTH−1:0 ] dina ,
output reg [WIDTH−1:0 ] douta ,
input wire wea) ;

reg [ 1 2 7 : 0 ] mem[ 5 1 1 : 0 ] ; // 512 , 128 b i t r e g i s t e r s
reg [ LOGSIZE−1:0 ] saved addr ;

wire signed [ 1 7 : 0 ] z0 , z1 , z2 , z3 , z4 , z5 , z6 , z7 ;
assign z0 = mem[ 0 ] [ 3 7 : 2 0 ] ;
assign z1 = mem[ 1 ] [ 3 7 : 2 0 ] ;
assign z2 = mem[ 2 ] [ 3 7 : 2 0 ] ;

assign z3 = mem[ 3 ] [ 3 7 : 2 0 ] ;
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assign z4 = mem[ 4 ] [ 3 7 : 2 0 ] ;
assign z5 = mem[ 5 ] [ 3 7 : 2 0 ] ;
assign z6 = mem[ 6 ] [ 3 7 : 2 0 ] ;
assign z7 = mem[ 7 ] [ 3 7 : 2 0 ] ;

always @(posedge c l k ) begin

i f (wea ) mem[ addra ] <= dina ;
douta <= mem[ addra ] ;

end

endmodule

‘timescale 1ns / 1ps
//

////////////////////////////////////////////////////////////////////////////////

// Company : 6.111
// Engineer : Joseph Lane
//
// Create Date : 19 :58 :07 09/28/2009
// Design Name:
// Module Name: b a l l d i v i d e r
// Pro jec t Name: Be l l a g i o Fountains
// Target Devices :
// Tool v e r s i on s :
// Descr ip t i on : Creates a 15Hz enab l e pu l s e
//
// Dependencies :
//
// Revis ion :
// Revis ion 0.01 − F i l e Created
// Add i t i ona l Comments :
//
//

////////////////////////////////////////////////////////////////////////////////

module b a l l d i v i d e r #(parameter PERIOD = 1799999) ( input c lk , r e s e t , output
ba l l e n ab l e ) ;

reg [ 2 0 : 0 ] counter ;
assign ba l l e n ab l e = ( counter == PERIOD) ;

always @(posedge c l k ) begin
i f ( r e s e t ) counter <= 0 ;
else counter <= ( counter == PERIOD) ? 0 : counter + 1 ;

end
endmodule // b a l l d i v i d e r

6 Appendix B: Physics Verilog Code

‘timescale 1ns / 1ps
//

////////////////////////////////////////////////////////////////////////////////

// Company :
// Engineer :
//
// Create Date : 20 :46 :36 12/05/2009
// Design Name:
// Module Name: c o l l i s i o n d e t e c t i o n s t a t e
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// Pro jec t Name:
// Target Devices :
// Tool v e r s i on s :
// Descr ip t i on : GOOGOL STATE LHC
//
// Dependencies :
//
// Revis ion :
// Revis ion 0.01 − F i l e Created
// Add i t i ona l Comments :
//
//

////////////////////////////////////////////////////////////////////////////////

module c o l l i s i o n d e t e c t i o n s t a t e ( input wire c lk , r e s e t ) ;
parameter COLLISION DETECT = 3 ’ b000 ;
parameter GET BALL 1 = 3 ’ b001 ;
parameter GET BALL 2 = 3 ’ b010 ;
parameter UPDATE POSITIONS = 3 ’ b011 ;
parameter COLLIDE WALL = 3 ’ b100 ;
parameter COLLIDE LHC = 3 ’ b101 ;
parameter WRITE POSITIONS = 3 ’ b110 ;
parameter DONE = 3 ’ b111 ;
parameter signed [ 1 7 : 0 ] RADIUS = 18 ’ b00 0000 0101 0001 1110 ; // 0.5 meters
parameter signed [ 1 7 : 0 ] TWO RADIUS = 18 ’ b00 0000 1010 0011 1101 ; // 1.0 meters
parameter signed [ 1 7 : 0 ] NEG WALL = 18 ’ b10 0001 1110 1011 1000 ; // −47 meters
parameter signed [ 1 7 : 0 ] POS WALL = 18 ’ b01 1110 0001 0100 0111 ; // 47 meters

/∗ Input and output from the BRAM ∗/
reg [ 1 2 7 : 0 ] bram ina ;
wire [ 1 2 7 : 0 ] bram outa ;

/∗ Assigned va l u e s e x t r a c t e d from the BRAM input and output ∗/
reg signed [ 1 7 : 0 ] b a l l x i n , b a l l y i n , b a l l z i n , ba l l vx i n , ba l l vy i n ,

b a l l v z i n ;
wire [ 2 : 0 ] b a l l i n c o l o r ;

wire [ 1 7 : 0 ] ba l l x out , ba l l y out , ba l l z ou t , ba l lvx out , ba l lvy out ,
ba l l v z out , b a l l o u t c o l o r ;

reg [ 2 : 0 ] b a l l o u t c o l o r ;

assign { ba l l x out , ba l l y out , ba l l z ou t , ba l lvx out , ba l lvy out , ba l l v z out ,
b a l l o u t c o l o r } = bram outa [ 1 2 7 : 1 7 ] ;

assign bram ina = { ba l l x i n , b a l l y i n , b a l l z i n , ba l l vx i n , ba l l vy i n ,
b a l l v z i n , b a l l i n c o l o r , 17 ’ b0 } ;

/∗ I n d i v i d u a l b a l l s used f o r comparison and updates ∗/
reg [ 1 2 7 : 0 ] ba l l 1 , b a l l 2 ;
wire signed [ 1 7 : 0 ] ba l l x 1 , ba l l y 1 , ba l l z 1 , ba l lvx 1 , ba l lvy 1 , b a l l v z 1 ;
reg signed [ 1 7 : 0 ] newx 1 , newy 1 , newz 1 , newvx 1 , newvy 1 , newvz 1 ;
reg signed [ 1 7 : 0 ] newx 2 , newy 2 , newz 2 , newvx 2 , newvy 2 , newvz 2 ;
wire signed [ 1 7 : 0 ] ba l l x 2 , ba l l y 2 , ba l l z 2 , ba l lvx 2 , ba l lvy 2 , b a l l v z 2 ;
wire [ 2 : 0 ] b a l l c o l o r 1 , b a l l c o l o r 2 ;
assign { ba l l x 1 , ba l l y 1 , ba l l z 1 , ba l lvx 1 , ba l lvy 1 , ba l l v z 1 , b a l l c o l o r 1 }

= ba l l 1 [ 1 2 7 : 1 7 ] ;
assign { ba l l x 2 , ba l l y 2 , ba l l z 2 , ba l lvx 2 , ba l lvy 2 , ba l l v z 2 , b a l l c o l o r 2 }

= ba l l 2 [ 1 2 7 : 1 7 ] ;

reg [ 2 : 0 ] s t a t e ;
wire ba l l 2 done ;
reg ba l l on e coun t ;
reg ba l l two count ;
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reg [ 1 : 0 ] l h c w r i t e c oun t ;

wire c o l l i d e x , c o l l i d e y , c o l l i d e z , c o l l i d e l h c , c o l l i d e w a l l ;
wire [ 4 : 0 ] co l l i d e map ;
wire signed [ 1 7 : 0 ] x d i f , y d i f , z d i f ;

reg [ 8 : 0 ] n ex t ba l l on e i ndex , nex t ba l l two index , bram addra ;

/∗ Wall c o l l i s i o n cond i t i on s ∗/
assign c o l l i d e x = ( ( ba l l x 1 − RADIUS <= NEG WALL) | | ( b a l l x 1 + RADIUS >=

POS WALL) ) ;
assign c o l l i d e y = ( ( ba l l y 1 − RADIUS <= NEG WALL) | | ( b a l l y 1 + RADIUS >=

POS WALL) ) ;
assign c o l l i d e z = ( ( b a l l z 1 − RADIUS <= NEG WALL) | | ( b a l l z 1 + RADIUS >=

POS WALL) ) ;
assign c o l l i d e w a l l = ( c o l l i d e x | | c o l l i d e y | | c o l l i d e z ) ;

/∗ Ba l l c o l l i s i o n cond i t i on s ∗/
assign x d i f = ( ba l l x 1 >= ba l l x 2 ) ? ( b a l l x 1 − ba l l x 2 ) : ( b a l l x 2 − ba l l x 1

) ;
assign y d i f = ( ba l l y 1 >= ba l l y 2 ) ? ( b a l l y 1 − ba l l y 2 ) : ( b a l l y 2 − ba l l y 1

) ;
assign z d i f = ( b a l l z 1 >= ba l l z 2 ) ? ( b a l l z 1 − b a l l z 2 ) : ( b a l l z 2 − b a l l z 1

) ;
assign c o l l i d e l h c = ( ( x d i f <= TWO RADIUS) && ( y d i f <= TWO RADIUS) && ( z d i f

<= TWO RADIUS) ) ;

assign co l l i de map = { c o l l i d e x , c o l l i d e y , c o l l i d e z , ( c o l l i d e l h c && !
c o l l i d e w a l l ) } ;

reg [ 8 : 0 ] num ac t i v e ba l l s ;
assign ba l l 2 done = ( nex t ba l l two index == num ac t i v e ba l l s ) ;

assign bram wea = ( s t a t e == COLLISION DETECT & ( c o l l i d e l h c | co l l i de map !=
4 ’ b0000 ) ) |

( s t a t e == COLLIDE LHC & ( wr i t e l h c c oun t != 2 ’ b11 ) ) |
( s t a t e == WRITE POSITIONS & ( po s i t i o n w r i t e c oun t == 1 ’ b0 ) ) |
( s t a t e == UPDATE POSITIONS) ;

/∗ Update b a l l v e l o c i t i e s i f c o l l i s i o n ∗/
always @∗ begin

case ( co l l i de map ) begin
4 ’ b0000 : {newx 1 , newy 1 , newz 1 , newvx 1 , newvy 1 , newvz 1 , new co lo r 1 } = {

ba l l x 1 , ba l l y 1 , ba l l z 1 , ba l lvx 1 , ba l lvy 1 , ba l l v z 1 , b a l l c o l o r 1 } ;
{newx 2 , newy 2 , newz 2 , newvx 2 , newvy 2 , newvz 2 , new co lo r 2 } = 111 ’ b0 ;

4 ’ b1000 : {newx 1 , newy 1 , newz 1 , newvx 1 , newvy 1 , newvz 1 , new co lo r 1 } = {
ba l l x 1 , ba l l y 1 , ba l l z 1 ,−ba l lvx 1 , ba l lvy 1 , ba l l v z 1 , b a l l c o l o r 1 } ;

{newx 2 , newy 2 , newz 2 , newvx 2 , newvy 2 , newvz 2 , new co lo r 2 } = 111 ’ b0 ;

4 ’ b0100 : {newx 1 , newy 1 , newz 1 , newvx 1 , newvy 1 , newvz 1 , new co lo r 1 } = {
ba l l x 1 , ba l l y 1 , ba l l z 1 , ba l lvx 1 ,−ba l lvy 1 , ba l l v z 1 , b a l l c o l o r 1 } ;

{newx 2 , newy 2 , newz 2 , newvx 2 , newvy 2 , newvz 2 , new co lo r 2 } = 111 ’ b0 ;

4 ’ b0010 : {newx 1 , newy 1 , newz 1 , newvx 1 , newvy 1 , newvz 1 , new co lo r 1 } = {
ba l l x 1 , ba l l y 1 , ba l l z 1 , ba l lvx 1 , ba l lvy 1 ,− ba l l v z 1 , b a l l c o l o r 1 } ;

{newx 2 , newy 2 , newz 2 , newvx 2 , newvy 2 , newvz 2 , new co lo r 2 } = 111 ’ b0 ;

4 ’ b0001 : {newx 1 , newy 1 , newz 1 , newvx 1 , newvy 1 , newvz 1 , new co lo r 1 } = {
ba l l x 1 , ba l l y 1 , ba l l z 1 , ba l lvx 2 , ba l lvy 2 , ba l l v z 2 , b a l l c o l o r 1 } ;

{newx 2 , newy 2 , newz 2 , newvx 2 , newvy 2 , newvz 2 , new co lo r 2 } = { ba l l x 2 , ba l l y 2 ,
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ba l l z 2 , ba l lvx 1 , ba l lvy 1 , ba l l v z 1 , b a l l c o l o r 2 } ;

endcase // case ( co l l i d e map )

end // always @ ∗

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗
∗ Co l l i s i o n Detec t ion
∗ GET BALL 1 : r e t r i e v e s mem data f o r lower index
∗ GET BALL 2 : r e t r i e v e s mem data f o r upper index
∗ COLLISION DETECT : checks both b a l l v a l u e s to see i f they
∗ are c o l l i d i n g with , f i r s t , the f l o o r and then each o ther
∗ −> GET BALL 1 i f done check ing a l l p a i r s f o r b a l l 1
∗ −> GET BALL 2 i f done check ing b a l l 1 wi th b a l l 2
∗ −> COLLIDE WALL i f b a l l 1 c o l l i d e s wi th wa l l
∗ −> COLLIDE LHC i f b a l l 1 and b a l l 2 are c o l l i d i n g
∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

always @(posedge c l k ) begin

i f ( r e s e t ) begin
s t a t e <= GET BALL 1 ;
n ex t ba l l o n e i nd ex <= 0 ;
nex t ba l l two index <= 1 ;
num ac t i v e ba l l s = 4 ’ b1010 ;
bram addra <= 0 ;
ba l l on e coun t <= 0 ;
ba l l two count <= 0 ;
wr i t e l h c c oun t <= 0 ;

end

i f ( s t a t e == COLLISION DETECT) begin

/∗ Co l l i s i o n wi th o ther b a l l ∗/
i f ( c o l l i d e l h c ) begin

bram addra <= nex t ba l l o n e i nd ex − 1 ;
//bram wea <= 1;
{ ba l l x i n , b a l l y i n , b a l l z i n , ba l l vx i n , ba l l vy i n , b a l l v z i n , b a l l c o l o r i n } <=

{newx 1 , newy 1 , newz 1 , newvx 1 , newvy 1 , newvz 1 , new co lo r 1 } ;
s t a t e <= COLLIDE LHC;

end

/∗ Co l l i s i o n wi th wa l l ∗/
else i f ( co l l i de map != 4 ’ b0000 ) begin

bram addra <= nex t ba l l o n e i nd ex − 1 ;
//bram wea <= 1;
{ ba l l x i n , b a l l y i n , b a l l z i n , ba l l vx i n , ba l l vy i n , b a l l v z i n , b a l l c o l o r i n } <=

{newx 1 , newy 1 , newz 1 , newvx 1 , newvy 1 , newvz 1 , new co lo r 1 } ;
s t a t e <= COLLIDE WALL;

end

/∗ No c o l l i s i o n s and f i n i s h e d wi th b a l l 2 ∗/
else i f ( ba l l 2 done ) begin
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/∗ No c o l l i s i o n s and done t e s t i n g a l l b a l l s ∗/
i f ( n ex t ba l l o n e i nd ex == num ac t i v e ba l l s ) begin

nex t ba l l two index <= 1 ;
n ex t ba l l o n e i nd ex <= 0 ;
bram addr <= 0 ;
s t a t e <= UPDATE POSITIONS;

end

/∗ No c o l l i s i o n s but more pa i r s to t e s t ∗/
else begin

nex t ba l l two index <= nex t ba l l o n e i nd ex + 1 ;
bram addra <= nex t ba l l o n e i nd ex ;
s t a t e <= GET BALL 1 ;

end
end

/∗ Not done wi th b a l l 2 ∗/
else begin

bram addra <= nex t ba l l two index ;
s t a t e <= GET BALL 2 ;

end
end // i f ( s t a t e == COLLISION DETECT)

i f ( s t a t e == COLLIDE WALL) begin
bram wea <= 0 ;

i f ( n ex t ba l l o n e i nd ex == num ac t i v e ba l l s ) begin
nex t ba l l two index <= 1 ;
n ex t ba l l o n e i nd ex <= 0 ;
bram addr <= 0 ;
s t a t e <= UPDATE POSITIONS;

end
else begin

nex t ba l l two index <= nex t ba l l o n e i nd ex + 1 ;
bram addra <= nex t ba l l o n e i nd ex ;
s t a t e <= GET BALL 1 ;

end // e l s e : ! i f ( n e x t b a l l o n e i n d e x == num ac t i v e b a l l s )

end // i f ( s t a t e == COLLIDE WALL)

i f ( s t a t e == COLLIDE LHC) begin
case ( w r i t e l h c c oun t ) begin

/∗ Write beg in s f o r f i r s t b a l l ∗/
2 ’ b00 : begin

s t a t e <= COLLIDE LHC;
wr i t e l h c c oun t <= 3 ’ b001 ;

end

/∗ Write ends f o r f i r s t b a l l . Write b eg in s f o r second b a l l ∗/
2 ’ b01 : begin

s t a t e <= COLLIDE LHC;
bram addra <= nex t ba l l two index + 1 ;
{ ba l l x i n , b a l l y i n , b a l l z i n , ba l l vx i n , ba l l vy i n , b a l l v z i n , b a l l c o l o r i n } <=

{newx 2 , newy 2 , newz 2 , newvx 2 , newvy 2 , newvz 2 , new co lo r 2 } ;
w r i t e l h c c oun t <= 3 ’ b010 ;

end
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/∗ Write f i n i s h e s f o r second b a l l ∗/
2 ’ b10 : begin

s t a t e <= COLLIDE LHC;
wr i t e l h c c oun t <= 3 ’ b011 ;

end

/∗ Setup f o r next s t a t e o f reads ∗/
2 ’ b11 : begin

s t a t e <= GET BALL 1 ;
bram addra <= nex t ba l l o n e i nd ex ;
n ex t ba l l two index <= nex t ba l l o n e i nd ex + 1 ;
//bram wea <= 0;
end

endcase // case ( w r i t e l h c c o un t )

end

i f ( s t a t e == GET BALL 1) begin
i f ( ba l l on e coun t == 0) begin

ba l l on e coun t <= 1 ;
end
else begin

/∗ Grab the va l u e s f o r b a l l 1 ∗/
ba l l x 1 <= 3 ’ b000 ;
b a l l y 1 <= 3 ’ b001 ;
b a l l z 1 <= 3 ’ b010 ;
n ex t ba l l o n e i nd ex <= nex t ba l l o n e i nd ex + 1 ;

/∗ Set dummy va l u e s and cont inue ∗/
i f ( n ex t ba l l o n e i nd ex == num ac t i v e ba l l s − 1) begin

ba l l x 2 <= 3 ’ b011 ;
b a l l y 2 <= 3 ’ b100 ;
b a l l z 2 <= 3 ’ b101 ;
s t a t e <= COLLISION DETECT;

end

/∗ Else , j u s t increment the index and move to GET BALL 2 ∗/
else begin

ba l l on e coun t <= 0 ;
bram addra <= nex t ba l l two index ;
s t a t e <= GET BALL 2 ;

end

end // e l s e : ! i f ( b a l l o n e c oun t == 0)
end // i f ( s t a t e == GET BALL 1)

/∗ Grab the va l u e s from the mem module and s t o r e ∗/
i f ( s t a t e == GET BALL 2) begin

i f ( ba l l two count == 0) begin
ba l l two count <= 1 ;

end
else begin

nex t ba l l two index <= nex t ba l l two index + 1 ;

/∗ Grab va l u e s from memory ∗/
ba l l x 2 <= 3 ’ b111 ;
b a l l y 2 <= 3 ’ b111 ;
b a l l z 2 <= 3 ’ b111 ;
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s t a t e <= COLLISION DETECT;
ba l l two count <= 0 ;

end
end // i f ( s t a t e == GET BALL 2)

/∗ Steps f o r updat ing the p o s i t i o n s
∗ Set the new po s i t i o n s based o f f o f the curren t b a l l s p o s i t i o n s and

v e l o c i t i e s
∗ Set wr i t e enab l e to high , go to the wr i t e s t a g e
∗/

i f ( s t a t e == UPDATE POSITIONS) begin
/∗ Update a l l o f the va l u e s ∗/
b a l l x i n <= ba l l x ou t + ba l l vx ou t ;
b a l l y i n <= ba l l y ou t + ba l l vy ou t ;
b a l l z i n <= ba l l z o u t + ba l l v z ou t − GRAVITY;
b a l l v x i n <= ba l l vx ou t ;
b a l l v y i n <= ba l l vy ou t ;
b a l l v z i n <= ba l l v z ou t − GRAVITY;
s t a t e <= WRITE POSITIONS;
//bram wea <= 1;

end

/∗ Steps f o r the wr i t e s t a g e
∗ Write enab l e i s high , wai t one c y c l e f o r wr i t e to f i n i s h .
∗ On next c l o c k cyc l e , the wr i t e i s f i n i s h ed , s e t we to 0 and change

address
∗ Go back to the UPDATE POSITIONS s t a t e on second c l o c k c y c l e
∗/

i f ( s t a t e == WRITE POSITIONS) begin
case ( p o s i t i o n w r i t e c oun t ) begin

1 ’ b0 : begin
po s i t i o n w r i t e c oun t <= 1 ;

s t a t e <= WRITE POSITIONS;
end

1 ’ b1 : begin
//bram wea <= 0;

i f ( ba l l add ra == num ac t i v e ba l l s − 1) begin
s t a t e <= DONE;
ba l l add ra <= 0 ;

end
else begin

ba l l add ra <= ba l l add ra + 1 ;
s t a t e <= UPDATE POSITIONS;

end
end

endcase // case ( p o s i t i o n w r i t e c o un t )
end // i f ( s t a t e == WRITE POSITIONS)

i f ( s t a t e == DONE) begin
bram addr <= 0 ;
n ex t ba l l o n e i nd ex <= 0 ;
nex t ba l l two index <= 1 ;
s t a t e <= ( enable ) ? GET BALL 1 : DONE;

end
end // always @ ( posedge c l k )

endmodule // c o l l i s i o n d e t e c t i o n s t a t e

/∗
∗ This i s the modelsim t e s t used to t e s t the Phys ics Engine S ta t e machine .
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∗ I t i n i t i a l i z e s 2 b a l l s in our model bram and run the phys i cd s s imu la t i on .
∗/
‘timescale 1ns / 1ps
module c o l l i s i o n t e s t v ;

// Inputs
reg c l k ;
reg r e s e t ;
reg enable ;
reg i n i t 1 ;
reg i n i t 2 ;
reg i n i t 3 ;
reg don e i n i t ;

// I n s t a n t i a t e the Unit Under Test (UUT)
c o l l i s i o n d e t e c t i o n s t a t e t e s t f i n a l uut (

. c l k ( c l k ) ,

. r e s e t ( r e s e t ) ,

. enable ( enable ) ,

. i n i t 1 ( i n i t 1 ) ,

. i n i t 2 ( i n i t 2 ) ,

. i n i t 3 ( i n i t 3 ) ,

. d on e i n i t ( d on e i n i t )
) ;

i n i t i a l c l k <= 0 ;
always #2 c lk <= ! c l k ; // 2ns ha l f−per iod = 500MHZ

i n i t i a l begin
// I n i t i a l i z e Inputs
r e s e t = 0 ;
enable = 0 ;
i n i t 1 = 0 ;
i n i t 2 = 0 ;
i n i t 3 = 0 ;
d on e i n i t = 0 ;
@(posedge c l k ) ;
@(posedge c l k ) ;
@(posedge c l k ) ;
r e s e t = 1 ;
@(posedge c l k ) ;
@(posedge c l k ) ;
r e s e t = 0 ;
@(posedge c l k ) ;
@(posedge c l k ) ;
i n i t 1 = 1 ;
@(posedge c l k ) ;
@(posedge c l k ) ;
i n i t 1 = 0 ;
i n i t 2 = 1 ;
@(posedge c l k ) ;
@(posedge c l k ) ;
i n i t 2 = 0 ;
d on e i n i t = 1 ;
@(posedge c l k ) ;
@(posedge c l k ) ;
@(posedge c l k ) ;
@(posedge c l k ) ;
@(posedge c l k ) ;
@(posedge c l k ) ;
@(posedge c l k ) ;
@(posedge c l k ) ;
@(posedge c l k ) ;
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@(posedge c l k ) ;
enable <= 1 ;

@(posedge c l k ) ;
enable <= 0 ;

#140
enable <= 1 ;
@(posedge c l k ) ;
@(posedge c l k ) ;
enable <= 0 ;

#140
enable <= 1 ;
@(posedge c l k ) ;
@(posedge c l k ) ;
enable <= 0 ;

#140
enable <= 1 ;
@(posedge c l k ) ;
@(posedge c l k ) ;
enable <= 0 ;

#140
enable <= 1 ;
@(posedge c l k ) ;
@(posedge c l k ) ;
enable <= 0 ;

#140
enable <= 1 ;
@(posedge c l k ) ;
@(posedge c l k ) ;
enable <= 0 ;

#140
enable <= 1 ;
@(posedge c l k ) ;
@(posedge c l k ) ;
enable <= 0 ;

#140
enable <= 1 ;
@(posedge c l k ) ;
@(posedge c l k ) ;
enable <= 0 ;

#140
enable <= 1 ;
@(posedge c l k ) ;
@(posedge c l k ) ;
enable <= 0 ;

#140
enable <= 1 ;
@(posedge c l k ) ;
@(posedge c l k ) ;
enable <= 0 ;

#140
enable <= 1 ;
@(posedge c l k ) ;
@(posedge c l k ) ;
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enable <= 0 ;

#140
enable <= 1 ;
@(posedge c l k ) ;
@(posedge c l k ) ;
enable <= 0 ;

#140
enable <= 1 ;
@(posedge c l k ) ;
@(posedge c l k ) ;
enable <= 0 ;

#140
enable <= 1 ;
@(posedge c l k ) ;
@(posedge c l k ) ;
enable <= 0 ;

#140
enable <= 1 ;
@(posedge c l k ) ;
@(posedge c l k ) ;
enable <= 0 ;

#140
enable <= 1 ;
@(posedge c l k ) ;
@(posedge c l k ) ;
enable <= 0 ;

#140
enable <= 1 ;
@(posedge c l k ) ;
@(posedge c l k ) ;
enable <= 0 ;

#140
enable <= 1 ;
@(posedge c l k ) ;
@(posedge c l k ) ;
enable <= 0 ;

#140
enable <= 1 ;
@(posedge c l k ) ;
@(posedge c l k ) ;
enable <= 0 ;

// Wait 100 ns f o r g l o b a l r e s e t to f i n i s h
#100;

// Add s t imu lu s here

end

endmodule

7 Appendix C: Graphics Verilog Code
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‘timescale 1ns / 1ps
//

////////////////////////////////////////////////////////////////////////////////

// Raytracer − SRAM Con t ro l l e r
// Adam Lerer / Sam Gross
//

////////////////////////////////////////////////////////////////////////////////

module s r am con t r o l l e r 2 ( c lk , r e s e t , f l i p , wr i te x , wr i te y , w r i t e c o l o r ,
wr i te depth ,
read x , read y , r ead co l o r , read depth ,

ram0 data , ram0 address , ram0 we b ,
ram1 data , ram1 address , ram1 we b ) ; //RAM IO

parameter x b i t s = 9 ;
parameter y b i t s = 10 ;
parameter c o l o r b i t s = 24 ;
parameter dep th b i t s = 8 ;

parameter width = 640 ;
parameter he ight = 480 ;

input r e s e t , c lk , f l i p ;
input [ x b i t s −1:0 ] wr i t e x ;
input [ y b i t s −1:0 ] wr i t e y ;
input [ c o l o r b i t s −1:0 ] w r i t e c o l o r ;
input [ depth b i t s −1:0 ] wr i t e depth ;

input [ x b i t s −1:0 ] read x ;
input [ y b i t s −1:0 ] read y ;
output reg [ c o l o r b i t s −1:0 ] r e ad c o l o r ;
output reg [ depth b i t s −1:0 ] read depth ;

inout [ 3 5 : 0 ] ram0 data , ram1 data ;
output [ 1 8 : 0 ] ram0 address , ram1 address ;
output ram0 we b , ram1 we b ;
wire [ 1 8 : 0 ] r ead addre s s ;
reg [ 1 8 : 0 ] w r i t e add r e s s ;
reg [ 2 3 : 0 ] w r i t e da t a i n t , w r i t e da ta i n t 2 , wr i t e da ta ;
reg r e ad bu f f e r ;

assign ram0 data = r e ad bu f f e r ? {4 ’h0 , wr i te depth , wr i t e da ta } : 36 ’ hz ;
assign ram1 data = ˜ r e ad bu f f e r ? {4 ’h0 , wr i te depth , wr i t e da ta } : 36 ’ hz ;
assign ram0 address = r e ad bu f f e r ? wr i t e add r e s s : r ead addre s s ;
assign ram1 address = ˜ r e ad bu f f e r ? wr i t e add r e s s : r ead addre s s ;
assign ram0 we b = ˜ r e ad bu f f e r ? 1 ’ b1 : 1 ’ b0 ;
assign ram1 we b = r e ad bu f f e r ? 1 ’ b1 : 1 ’ b0 ;
assign r ead addre s s = ( read y << x b i t s ) + read x ;

always @ (posedge c l k )
begin

i f ( r e s e t )
r e ad bu f f e r <= 1 ’ b0 ;
w r i t e d a t a i n t <= wr i t e c o l o r ;
w r i t e d a t a i n t 2 <= wr i t e d a t a i n t ;
wr i t e da ta <= wr i t e d a t a i n t 2 ;

i f ( f l i p )
r e ad bu f f e r <= ˜ r e ad bu f f e r ;
w r i t e add r e s s <= ( wr i t e y << x b i t s ) + wr i t e x ;
{ read depth , r e ad c o l o r } <= read bu f f e r ? ram1 data [ d ep th b i t s+c o l o r b i t s

−1:0 ] : ram0 data [ d ep th b i t s+c o l o r b i t s −1 : 0 ] ;
end
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endmodule

‘timescale 1ns / 1ps
//

////////////////////////////////////////////////////////////////////////////////

// Company :
// Engineer :
//
// Create Date : 21 :56 :29 12/07/2009
// Design Name:
// Module Name: displayFSM
// Pro jec t Name:
// Target Devices :
// Tool v e r s i on s :
// Descr ip t i on :
//
// Dependencies :
//
// Revis ion :
// Revis ion 0.01 − F i l e Created
// Add i t i ona l Comments :
//
//

////////////////////////////////////////////////////////////////////////////////

module displayFSM ( input c lock , r e s e t , ba l lVa l id , f l o o rVa l i d , newFrame , input [ 9 : 0 ]
ba l lx , input [ 8 : 0 ] ba l ly ,
input [ 2 3 : 0 ] ba l lCo lo r , input [ 7 : 0 ] bal lDepth , input [ 9 : 0 ] f l o o rx , input [ 8 : 0 ]

f l o o ry , output reg f l oorAccepted ,
bal lAccepted , output reg [ 9 : 0 ] writex , output reg [ 8 : 0 ] writey , output reg

[ 2 3 : 0 ] p i x e lCo l o r ) ;

reg [ 9 : 0 ] x ;
reg [ 8 : 0 ] y ;
reg [ 2 4 : 0 ] c o l o r ;
reg [ 7 : 0 ] depth ;
reg [ 1 : 0 ] s t a t e ;
reg [ 9 : 0 ] xaddre s s counte r ;
reg [ 8 : 0 ] yaddre s s counte r ;
wire [ 7 : 0 ] z bu f f e r da t a ;
wire [ 1 8 : 0 ] zbu f f e r add r ;
reg zbu f f e r we ;
wire [ 7 : 0 ] z b u f f e r w r i t e ;

z bu f f e r zbu f f e r 1 ( . c l o ck ( c l o ck ) , . data ( zbu f f e r da t a ) , . addr ( zbu f f e r add r ) , . we(
zbu f f e r we ) ,

. wr i t e ( z b u f f e r w r i t e ) ) ;

parameter f l o o rCo l o r = 0 ;
parameter f l oorDepth = 8 ’ b1111 1110 ;
parameter c l e an i ngBu f f e r = 0 ;
parameter waitForInput = 1 ;
parameter wr i t i ng = 2 ;
assign zbu f f e r add r = {x , y } ;
assign z b u f f e r w r i t e = depth ;

always @ (posedge c l o ck ) begin
case ( s t a t e )

c l e an i ngBu f f e r : begin
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p ix e lCo l o r <= 0 ;
zbu f f e r we <= 1 ;
depth <= 8 ’ b1111 1111 ;
wr i tex <= xaddre s s counte r ;
wr i tey <= yaddre s s counte r ;
xaddre s s counte r <= xaddre s s counte r + 1 ;
i f ( xaddre s s counte r == 639)begin

yaddress counter<=yaddre s s counte r + 1 ;
i f ( yaddre s s counte r == 479)

s ta te<=waitForInput ;
end

end
waitForInput : begin

zbu f f e r we <=0;
i f (newFrame)begin

xaddre s s counte r <=0;
yaddre s s counte r <=0;
s ta te<=c l e an ingBu f f e r ;

end
else begin

i f ( f l o o rVa l i d )begin
s t a t e <= wr i t i ng ;
f l oo rAccepted <= 1 ;
x <= f l o o r x ;
y <= f l o o r y ;
c o l o r <= f l o o rCo l o r ;
depth <= floorDepth ;

end
else i f ( ba l lVa l i d )begin

s t a t e <= wr i t i ng ;
ba l lAccepted <=1;
x <= ba l l x ;
y <= ba l l y ;
c o l o r <= ba l lCo l o r ;
depth <= bal lDepth ;

end
end

end
// Ba l l S t a t e s
wr i t i ng : begin

f l oo rAccepted <= 0 ;
ba l lAccepted <= 0 ;
i f ( depth<zbu f f e r da t a )begin

writex <= x ;
wr i tey <= y ;
p i x e lCo l o r <= co l o r ;
zbu f f e r we <=1;

end
i f (newFrame)

s t a t e <= c l e an ingBu f f e r ;
else

s t a t e <= waitForInput ;
end
// ba l lWr i t e : beg in
// s t a t e<=waitForInput ;
// i f ( posBa l l ==0)beg in
// i f ( read da ta [15:8] > da taBa l l [ 1 5 : 8 ] ) beg in
// we<=1;
// addr<= addrBa l l ;
// p i xe lDa ta <= { read da ta [ 3 5 : 1 6 ] , da taBa l l } ;
// end
// end
// e l s e beg in
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// i f ( read da ta [31:24] > da taBa l l [ 1 5 : 8 ] ) beg in
// we<=1;
// addr<= addrBa l l ;
// p i xe lDa ta <= {4 ’ b0000 , dataBa l l , r ead da ta [ 1 5 : 0 ] } ;
// end
// end
// end
// //Floor S t a t e s
// f l o o r I n pu t : beg in
// f l oo rAccep t ed <= 0;
// wr i t e x <=
// i f (newFrame)
// s t a t e <= c l ean ingBu f f e r ;
// e l s e
// s t a t e <= waitForInput ;
// end
// f loorWai t : s t a t e <= f loorWr i t e ;
// f l oo rWr i t e : beg in
// s t a t e<=waitForInput ;
// i f ( posFloor ==0)beg in
// i f ( read da ta [15:8] > dataFloor [ 1 5 : 8 ] ) beg in
// we<=1;
// addr<= addrFloor ;
// p i xe lDa ta <= { read da ta [ 3 5 : 1 6 ] , dataFloor } ;
// end
// end
// e l s e beg in
// i f ( read da ta [31:24] > dataFloor [ 1 5 : 8 ] ) beg in
// we<=1;
// addr<= addrFloor ;
// p i xe lDa ta <= {4 ’ b0000 , dataFloor , read da ta [ 1 5 : 0 ] } ;
// end
// end
// end
// d e f a u l t : s t a t e <= waitForInput ;

endcase
end

endmodule

‘timescale 1ns / 1ps
//

////////////////////////////////////////////////////////////////////////////////

// Company :
// Engineer :
//
// Create Date : 15 :45 :47 12/05/2009
// Design Name:
// Module Name: p r o j e c t i on
// Pro jec t Name:
// Target Devices :
// Tool v e r s i on s :
// Descr ip t i on :
//
// Dependencies :
//
// Revis ion :
// Revis ion 0.01 − F i l e Created
// Add i t i ona l Comments :
//
//

////////////////////////////////////////////////////////////////////////////////
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module p r o j e c t i o n ( clk 27mhz , addr , dataIn , xpos , ypos , co lo r , ready , newFrame , done ,
d i s t ance ) ;

input clk 27mhz ;
output reg [ 8 : 0 ] addr ;
input [ 1 2 7 : 0 ] dataIn ;
output [ 9 : 0 ] xpos ;
output [ 9 : 0 ] ypos ;
output [ 2 : 0 ] c o l o r ;
input ready ;
input newFrame ;
output reg done ;
output [ 8 : 0 ] d i s t anc e ;

parameter maxMemAddr = 9 ’ b1 1111 1111 ;
parameter signed camerax=0;
parameter signed cameray= 18 ’ b11 1111 1111 1111 0000 ;
parameter signed cameraz = 0 ;
parameter signed ey = 18 ’ b11 1111 1111 1111 1111 ;

wire signed [ 1 7 : 0 ] x loc , yloc , z loc , xd , yd , zd ;
wire [ 1 8 : 0 ] x sh i f t ed , y sh i f t ed , z s h i f t e d ;

d i v i d e r d i v i d e r 1 ( c lock , ey , dy , ans ) ;

assign c o l o r = dataIn [ 1 8 : 1 6 ] ;
assign x loc = dataIn [ 1 2 7 : 1 1 0 ] ;
assign y loc = dataIn [ 1 0 9 : 9 2 ] ;
assign z l o c = dataIn [ 9 1 : 7 4 ] ;

assign xd = xloc−camerax ;
assign yd = yloc − cameray ;
assign zd = zloc−cameraz ;

assign x sh i f t e d = x loc + 131072;
assign z s h i f t e d = z l o c + 131072;
assign y sh i f t e d = y loc + 131072;

assign xpos =dx ∗ ans + 620 ;
assign ypos = dz ∗ ans + 240 ;
assign d i s t ance = y sh i f t e d [ 1 8 : 1 1 ] ;

always @(posedge clk 27mhz ) begin
i f (newFrame)begin

addr <=0;
done <=0;

end
i f ( ready && ( addr<maxMemAddr)&&˜done )begin

addr <= addr+1;
end
i f ( ( addr==maxMemAddr) && ready )begin

done <=1;
addr <=0;

end
end

endmodule

‘timescale 1ns / 1ps
//
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////////////////////////////////////////////////////////////////////////////////

// Company :
// Engineer :
//
// Create Date : 19 :17 :59 12/05/2009
// Design Name:
// Module Name: shading
// Pro jec t Name:
// Target Devices :
// Tool v e r s i on s :
// Descr ip t i on :
//
// Dependencies :
//
// Revis ion :
// Revis ion 0.01 − F i l e Created
// Add i t i ona l Comments :
//
//

////////////////////////////////////////////////////////////////////////////////

module shading ( c lock , r e s e t , ready , done , p ixe lVa l id , d i s tance , colorOut , co l o r In , xpos ,
ypos , p ixe lx , p ixe ly , pixelDepth , accepted ) ;

input c lock , done , accepted , r e s e t ;
input [ 2 : 0 ] c o l o r I n ;
input [ 9 : 0 ] xpos ;
input [ 8 : 0 ] ypos ;
input [ 7 : 0 ] d i s t ance ;
output reg [ 9 : 0 ] p i x e l x ;
output reg [ 8 : 0 ] p i x e l y ;
output reg [ 7 : 0 ] p ixe lDepth ;
output [ 2 3 : 0 ] colorOut ;
output reg p i x e lVa l i d ;
output ready ;

parameter rad iu s = 16 ;
reg [ 9 : 0 ] xcounter ;
reg [ 8 : 0 ] ycounter ;
reg [ 2 : 0 ] s t a t e ;
reg [ 2 : 0 ] c o l o r ;
reg [ 9 : 0 ] xcenter , xLow , xHigh ;
reg [ 8 : 0 ] ycenter , yLow , yHigh ;
//wire [ 8 : 0 ] rad ius ;
wire [ 2 0 : 0 ] xsquared , ysquared , rsquared ;
wire signed [ 9 : 0 ] x ;
wire signed [ 8 : 0 ] y ;
// as s i gn rad ius = ˜ d i s t ance ;
assign x = xcenter−xcounter ;
assign y = ycenter−ycounter ;

assign colorOut = ( c o l o r==0)? {24 ’h002EB8 } :
( c o l o r==1)? {24 ’ h3366FF } :
( c o l o r==2)? {24 ’h33CCFF} :
( c o l o r==3)? {24 ’ h33FF66 } :
( c o l o r==4)? {24 ’hFFCC33} :
( c o l o r==5)? {24 ’ hFF6633 } :
( c o l o r==6)? {24 ’ hFF3366 } :
{24 ’hFF33CC} ;

parameter i n i t i a l i z e = 0 ;
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parameter c a l c u l a t eVa l i d = 1 ;
parameter increment = 3 ;
parameter waitForRam=4;
parameter mult ip ly = 5 ;

assign ready = ( s t a t e==i n i t i a l i z e ) ;
assign xsquared = x∗x ;
assign ysquared = y∗y ;
assign rsquared = rad iu s ∗ rad iu s ;

always @(posedge c l o ck ) begin
i f ( r e s e t )

s ta te<=i n i t i a l i z e ;
case ( s t a t e )

i n i t i a l i z e : begin
c o l o r <= co l o r I n ;
pixe lDepth <= di s t anc e ;
xcente r <= xpos ;
ycente r <= ypos ;
xLow <= xpos−rad iu s ;
xHigh <= xpos+rad iu s ;
yLow <= ypos−rad iu s ;
yHigh <= ypos + rad iu s ;
xcounter<=xpos−rad iu s ;
ycounter<=ypos−rad iu s ;
s t a t e <= done ? i n i t i a l i z e : c a l c u l a t eVa l i d ;

end
c a l c u l a t eVa l i d : begin

i f ( xsquared+ysquared<rsquared )begin
p ix e l x <= xcounter ;
p i x e l y <= ycounter ;
p ixe lVa l id <=1;
s t a t e <= waitForRam ;

end
else

s ta te<=increment ;
end
waitForRam : begin

s ta te<=accepted ? increment : waitForRam ;
p i x e lVa l i d <= accepted ? 0 : 1 ;
end

increment : begin
p i x e lVa l i d <=0;
i f ( xcounter<xHigh )

xcounter<=xcounter +1;
else begin

xcounter<=xLow ;
ycounter<=ycounter +1;

end
i f ( ycounter==yHigh )

s ta te<=i n i t i a l i z e ;
else

s ta te<=ca l cu l a t eVa l i d ;
end

endcase

end

endmodule

///////////////////////////////////////////////////////////////////////////////
//
// 6.111 FPGA Labk i t −− ZBT RAM c lo c k genera t ion
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//
//
// Created : Apr i l 27 , 2004
// Author : Nathan I ck e s
//
///////////////////////////////////////////////////////////////////////////////
//
// This module genera t e s deskewed c l o c k s f o r d r i v i n g the ZBT SRAMs and FPGA
// r e g i s t e r s . A s p e c i a l f e edback t race on the l a b k i t PCB ( which i s l e n g t h
// matched to the RAM tra c e s ) i s used to ad j u s t the RAM c l o c k phase so t ha t
// r i s i n g c l o c k edges reach the RAMs at e x a c t l y the same time as r i s i n g c l o c k
// edges reach the r e g i s t e r s in the FPGA.
//
// The RAM c l o c k s i g n a l s are dr iven by DDR output bu f f e r s , which f u r t h e r
// ensures t ha t the c lock−to−pad de lay i s the same fo r the RAM c l o c k s as i t i s
// f o r any o ther r e g i s t e r e d RAM s i g n a l .
//
// When the FPGA i s conf igured , the DCMs are enab led b e f o r e the chip− l e v e l I /O
// d r i v e r s are r e l e a s e d from t r i s t a t e . I t i s t h e r e f o r e necessary to
// a r t i f i c i a l l y ho ld the DCMs in r e s e t f o r a few c y c l e s a f t e r c on f i g u r a t i on .
// This i s done us ing a 16− b i t s h i f t r e g i s t e r . When the DCMs have locked , the
// <l ock> output o f t h i s mnodule w i l l go h igh . Un t i l the DCMs are locked , the
// ouput c l o c k t imings are not guaranteed , so any l o g i c dr i ven by the
// <f p g a c l o c k > shou ld probab l y be he l d i n r e s e t u n t i l <l ocked> i s h igh .
//
///////////////////////////////////////////////////////////////////////////////

module ramclock ( r e f c l o c k , fpga c l o ck , ram0 clock , ram1 clock ,
c l o ck f e edback in , c l o ck f e edback out , locked ) ;

input r e f c l o c k ; // Reference c l o c k input
output f p ga c l o ck ; // Output c l o c k to d r i v e FPGA l o g i c
output ram0 clock , ram1 clock ; // Output c l o c k s f o r each RAM chip
input c l o c k f e e dba ck i n ; // Output to f eedback t race
output c l o ck f e edback ou t ; // Input from feedback t race
output l ocked ; // Ind i c a t e s t ha t c l o c k ou tpu t s are s t a b l e

wire r e f c l k , f pga c lk , ram clk , f b c l k , lock1 , lock2 , dcm reset , ram clock ;

////////////////////////////////////////////////////////////////////////////

assign r e f c l k = r e f c l o c k ; // used to f i x BUFG con s t r a i n t

//IBUFG r e f b u f ( .O( r e f c l k ) , . I ( r e f c l o c k ) ) ;

BUFG in t bu f ( .O( f pga c l o ck ) , . I ( f p g a c l k ) ) ;

DCM int dcm ( .CLKFB( fpga c l o ck ) ,
.CLKIN( r e f c l k ) ,
.RST( dcm reset ) ,
.CLK0( f p ga c l k ) ,
.LOCKED( lock1 ) ) ;

// s yn t h e s i s a t t r i b u t e DLL FREQUENCY MODE of int dcm i s ”LOW”
// s yn t h e s i s a t t r i b u t e DUTY CYCLE CORRECTION of int dcm i s ”TRUE”
// s yn t h e s i s a t t r i b u t e STARTUP WAIT of int dcm i s ”FALSE”
// s yn t h e s i s a t t r i b u t e DFS FREQUENCY MODE of int dcm i s ”LOW”
// s yn t h e s i s a t t r i b u t e CLK FEEDBACK of int dcm i s ”1X”
// s yn t h e s i s a t t r i b u t e CLKOUT PHASE SHIFT of int dcm i s ”NONE”
// s yn t h e s i s a t t r i b u t e PHASE SHIFT of int dcm i s 0

BUFG ext bu f ( .O( ram clock ) , . I ( ram clk ) ) ;

IBUFG fb bu f ( .O( f b c l k ) , . I ( c l o c k f e e dba ck i n ) ) ;
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DCM ext dcm ( .CLKFB( f b c l k ) ,
.CLKIN( r e f c l k ) ,
.RST( dcm reset ) ,
.CLK0( ram clk ) ,
.LOCKED( lock2 ) ) ;

// s yn t h e s i s a t t r i b u t e DLL FREQUENCY MODE of ext dcm i s ”LOW”
// s yn t h e s i s a t t r i b u t e DUTY CYCLE CORRECTION of ext dcm i s ”TRUE”
// s yn t h e s i s a t t r i b u t e STARTUP WAIT of ext dcm i s ”FALSE”
// s yn t h e s i s a t t r i b u t e DFS FREQUENCY MODE of ext dcm i s ”LOW”
// s yn t h e s i s a t t r i b u t e CLK FEEDBACK of ext dcm i s ”1X”
// s yn t h e s i s a t t r i b u t e CLKOUT PHASE SHIFT of ext dcm i s ”NONE”
// s yn t h e s i s a t t r i b u t e PHASE SHIFT of ext dcm i s 0

SRL16 dcm rs t s r ( .D(1 ’ b0 ) , .CLK( r e f c l k ) , .Q( dcm reset ) ,
.A0(1 ’ b1 ) , .A1(1 ’ b1 ) , .A2(1 ’ b1 ) , .A3(1 ’ b1 ) ) ;

// s yn t h e s i s a t t r i b u t e i n i t o f d cm rs t s r i s ”000F”;

OFDDRRSE ddr reg0 ( .Q( ram0 clock ) , .C0( ram clock ) , .C1(˜ ram clock ) ,
.CE (1 ’ b1 ) , .D0(1 ’ b1 ) , .D1(1 ’ b0 ) , .R(1 ’ b0 ) , . S (1 ’ b0 ) ) ;

OFDDRRSE ddr reg1 ( .Q( ram1 clock ) , .C0( ram clock ) , .C1(˜ ram clock ) ,
.CE (1 ’ b1 ) , .D0(1 ’ b1 ) , .D1(1 ’ b0 ) , .R(1 ’ b0 ) , . S (1 ’ b0 ) ) ;

OFDDRRSE ddr reg2 ( .Q( c l o ck f e edback ou t ) , .C0( ram clock ) , .C1(˜ ram clock ) ,
.CE (1 ’ b1 ) , .D0(1 ’ b1 ) , .D1(1 ’ b0 ) , .R(1 ’ b0 ) , . S (1 ’ b0 ) ) ;

assign l ocked = lock1 && lock2 ;

endmodule
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