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Theory

Idea
Deterministic multiprocessing systems can provide important benefits in many 
applications. A deterministic multiprocessing system has the same output given the 
same input. For our purposes, we will fix the inputs to the system to be the code 
that’s running and the data supplied to the program when it starts running or read 
by the program at well-defined times. This precludes nondeterminism introduced by 
button presses by forcing it to be only read in a deterministic way.

Concept
This implementation of deterministic multiprocessing will essentially be a time-
slicing multitasking system in which the inherent parallelism of the problem is 
recovered across the multiple CPU cores. In order to recover determinism, we must 
look at how a time-slicing multitasking system orders reads and writes to memory. 
Essentially, reads and writes only must ordered on the inter-time slice level, since 
within a single time slice the ordering of the reads and writes taking effect is given 
by the order of instructions executed. We will snoop inter-thread communications 
and enforce a deterministic ordering on them. By enforcing determinism at this 
point, we will produce a deterministic system.

High Level Design
In order to enforce determinism between time slices, we will implement this system 
as a cache that sits between the processors and the main memory.  To account for 
the time slices, each processor will incorporate an instruction counter, as this gives 
us fine-grained deterministic times-slicing (a timer interrupt would not work 
because it would be nondeterministic if the interrupt didn’t have the highest 
preemption priority).  We will use a scheme similar to CoreDet in which we buffer all 
loads and stores in per-processor caches. Since we store all this information, we can 
construct a snooping protocol that will detect communication between threads. 
When threads communicate, their communication must be handled 
deterministically. Otherwise, we can rely on each processor to remain self-
consistent, and allow them to run without synchronization until communication is 
detected (or the end of a timeslice is reached). Synchronization is handled by a 
protocol that causes all pending writes to be flushed quickly and deterministically.
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Design Details
The system operates by moving through three phases: the parallel phase, the 
commit phase, and the serial phase. The parallel phase is when the bulk of the work 
is done by all processors in parallel. The processors halt when they begin to 
communicate or reach the end of their time slice. When all processors are halted, 
they move to the commit phase, where pending writes are flushed to main memory 
in a deterministic order. Finally, the serial phase happens, when each processor is 
given a second, short time slice to run as the only processor in the system. This 
allows short extents of operations on mutexes to occur without causing most of a 
time slice to be wasted due to the processor halting due to communication.

The system is broadly divided into 3 components: the Processors (CPUs), the 
Arbitrators, and the CAM (content addressable memory) buffers. The CPUs execute 
and issue reads and writes to the arbitrators. The arbitrators maintain coherency in 
the CAM Buffers, detect communication between threads, and execute the 
algorithms. The CAM buffers provide a fast way to check what memory locations 
have been modified to maintain the protocol. In addition, there is a state machine 
that maintains which phase is currently being executed, as well as several support 
modules like the instruction counters, main memory controller, and graphics output. 
On the following page is a block diagram.
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Parallel Phase
The parallel phase takes place until the instruction counter has expired or an 
arbitrator has detected communication. Thus, the majority of the complexity in the 
components that run this phase is in detecting communication, since instruction 
counting and processor halting are trivial operations. Each CAM buffer slot must 
store the address of memory that was accessed, the data that is in that location 
after the most recent access, and three additional bits of information (the tag): 
whether the address has been accessed Exclusively by the local processor or 
whether it is Shared, whether the address has been Read or not (0), and whether 
the address has been Written or not (0). Example states of a memory location could 
thus be E/R/W (exclusively held, read and written) or S/R/0 (shared, read-only). The 
following table describes how the state transitions must take place. Any transition 
not listed in the table represents a communication and thus results in a halt until 
after the deterministic commit phase. From the perspective of each arbitrator, a 
memory address can either be found in the local, directly connected CAM buffer or 
found in one of the other arbitrator's CAM buffers (a friend buffer).
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On Read

Found in Valid Tags Change Tag To

Local CAM Buffer E/?/? or S/R/0 E/R/? or S/R/0

Friend CAM Buffer E/R/0 or S/R/0 S/R/0

Not found (fetch) --- E/R/0

On Write

Found in Valid Tags Change Tag To

Local CAM Buffer E/?/? or S/0/W E/?/W or S/0/W

Friend CAM Buffer E/0/W or S/0/W S/0/W

Not found (fetch) --- E/0/W

Reads and writes will proceed in the above-defined way until every CPU halts. CPUs 
halt for three reasons: during a read or write operation, an address was found in a 
local or friend buffer but wasn't in a valid state; the instruction count for that CPU 
was reached; or the CAM buffer for that CPU overflowed.

The snooping protocol will work as follows. Every arbitrator will have a connection to 
every other arbitrator. When an arbitrator wants to know whether a friend has a 
piece of memory in its CAM buffer, it signals all arbitrators that it needs to read or 
write some address. Then all of the other arbitrators will signal the requesting 
arbitrator when they've determined that they A) do not have that address, B) have 
that address and the pending operation can continue, or C) they have that address 
and the pending operation must be deferred until the commit phase runs. This 
interconnect protocol allows the address bits to be shared, so that for K processors 
and an N bit address bus, N+2 bits are required to signal the other arbitrators 
(address bus, start, read/write), and each arbitrator needs 2*K bits to get responses 
from the others (A, B, C, or invalid encoded in two bits).

Commit Phase
The commit phase runs after all CPUs have been halted. The commit algorithm 
works as follows:
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 1. For each CPU in a deterministic round-robin order:

 1.1. For each written CAM buffer cell in chronological order:

 a) Write out modified bytes in buffer cell

 b) Notify other arbitrators that the given address has been written once 
and should not be written again

• This causes the other arbitrators to erase their copies of this 
address

 c) Mark this cell as empty

 1.2. Mark all CAM buffer cells invalid

This algorithm is easily executed by having each arbitrator flush its pending writes 
in deterministic order and using the communication channels from the parallel 
phase to notify the other arbitrators as addresses are committed.

It is important to note here that this system is not exactly a cache, since it 
periodically flushes all of the cached data regardless of whether or not it has been 
modified. This is necessary to prevent stale data from being kept in the cache after 
a commit cycle.

This algorithm is intended to be amenable to deep pipelining, which should mitigate 
any performance impact caused by this stage.

Serial Phase
There may not be enough time to implement this phase, as it only exists to improve 
performance by exploiting locality in lock acquisition. It only requires use of the 
instruction counter and a simple round-robin state machine, and it essentially 
bypasses the CAM memory, causing all reads and writes to be directly read from or 
written to main memory.

Other Elements

Memory Controller
The main memory controller will have to multiplex access to the ZBT RAM in the 
labkit so that all of the arbitrators can access it. It will use a request queue to 
schedule memory operations in the order they're received. This request queue will 
be of limited size, and will attempt to be fair in the order it services requests from 
arbitrators. For the commit phase, there may be an alternative mode that exposes 
the pipelining available in the ZBT RAM to increase performance.
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Graphics Device
A region of main memory will be mapped to the VGA output controller from Lab 5 
for use as a frame buffer for demonstration applications.

Processors
The processors will be the PicoBlaze compatible processors we went over in lecture 
due to their simplicity unless there is enough time to integrate with a more complex 
architecture. They will need to modified to support reading and writing to another 
memory controller, arbitrary halting, and instruction counting.

Instruction Counter
Each processor will be retrofitted with a programmable instruction counter that 
signals when a specifiable number of instructions has been reached. This will be 
used by the halt detection logic and the serial phase.

Testing
For the three phases of operation, testing will be relatively straightforward, as each 
phase is essentially an algorithm that maintains a set of invariants. The testing code 
will apply a variety of inputs to the state machines and ensure that the invariants 
are maintained. Nondeterminism will be introduced by varying the clock frequencies 
of the processors to simulate cache misses, pipeline bubbles, and bus protocol 
overheads. Every module will be heavily tested prior to synthesis in order to ensure 
that the entire system behaves exactly as expected.

Hardware Usage
Each PicoBlaze processor takes very few slices of logic (on the order of 100). The 
arbitrators shouldn't take more than the processors, and the CAM buffers should 
take very few slices and no more than 3 BRAMs. If there are enough BRAMs 
available, I will not implement a ZBT memory controller and just use the other 
BRAMs to simulate main memory. No other hardware will be needed.
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