
Vehicle Control using Video Surveillance 

1. Overview 

 
The Vehicle Control using Video Surveillance (VCVS) is a project using FPGA 

to achieve real time vehicle control with position feedbacks from camera. The system 

uses one camera to obtain an eagle-eye view of the field, where the target vehicle will 

be. Using the 2-D information from the camera, an object recognition module will 

perform threshold filtering to find the position of the vehicle and any obstacles on the 

map.  VCVS provides a user interface that allows users to choose the desired 

destination of the vehicle and the central control FSM will direct and vehicle to reach 

the final destination with the presence of obstacles in the way. The VCVS system 

includes the following main modules. 

 

Jorge’s part 

 

1. video_decoder: This module takes signals from a NTSC camera and decodes 

that information into YCrCb that is 30 bits long. 

 

2. ntsc_to_ZBT: stores pixel information as RGB into the on-board ZBT 

memory. 

 

3. user_input: mouse control for user interface, and user interface features  

 

4. grid_map: generates a grid map that virtualizes the field, displays the current 

position of the vehicle, updates the locations of obstacles, and shows final 

Kevin’s part 

5. YCrCb_to_RGB: converts 30 bit YCrCb to 24 bit RGB.  

 

6. threshold_filter: filters the incoming pixels with color thresholds in order to 

find the position and orientation of the vehicle. The threshold filter also filters 

out the obstacles and stores that information in a BRAM. 

 

Krishna’s part: 

7. main_control_FSM: with the position and orientation information of the 

vehicle, desired destination from user input, and access to BRAM of obstacle 

information, the main control FSM decides how to control and vehicle, and 

the optimal path it should take to reach the destination. The control FSM will 

send control signals to the interface that controls the vehicle. 

 

 

 



2. Description of Modules 
 

This section explains the functions of each module in more detail, including the 

descriptions of inputs and outputs, test strategy, and potential challenges.   

 
1. video_decoder: This module interfaces with the NTSC camera, decodes the input 

signal and converts the pixel information into a 30 bit value, with 10 bits each for 

Y, Cr and Cb. Since NTSC video standard implements interlacing mechanism, 

this module also outputs f as a one bit value to indicate whether it is in odd or 

even field. One bit values, v and h are outputted to show the position of that pixel. 

It outputs a data_valid bit to tell other modules that the data is ready for use. 

 

2. ntsc_to_ZBT: This module is responsible for generating corresponding address in 

ZBT memory to store the current filtered incoming pixel information. Since the 

camera uses a different clock frequency, this module is the entry point to 

synchronize data from the camera with the rest of the system. A sample module is 

already written, but slight changes have to be made in order for it to store colored 

pixels.  

 

3. user_input: This module observes the current coordinates of the mouse pointer 

and the status of the mouse buttons. The module will output signals corresponding 

to desired destination that user selected. We will use a ps/2 mouse.  

 

4. grid_map: This module creates a grid map representing the field camera is 

looking at. According to information such as vehicle position, obstacle position, 

and user desired destination, grid map highlights them with different colors. 

Coordination and orientation of vehicle position will also be updated continuously 

as vehicle moves in the field. Depending on how good we want our interface is 

visually, a lot more features could be added later on. For a start, we will do 

minimal visual design and use it as mainly a debugging tool. 

 

5. YCrCb_to_RGB: This module converts 30bit YCrCb pixel input into a 24bit 

RGB string. Such module is already written, but we note that this module has a 5 

clock cycle delay between inputs and outputs. Therefore, the address into the ZBT 

memory should be delayed appropriately in order to store in the correct location. 

 

6. threshold_filter: This module reads directly from the incoming video data; an 

YCrCb to RGB converter is embedded in this module in order to store RGB 

information in memory. Then this module filters each pixel using a simple color 

threshold. On the vehicle there will be markers for both the front and rear, we find 

the center of mass of each marker so that we can find the position as well as the 

orientation of the vehicle. For obstacles, we do the same filtering except we store 

that information in a BRAM. The main FSM will ask if an obstacle is present in a 

location by passing in the location as the address in the BRAM, and a one bit 

value will be outputted. This mechanism might be slow and finding obstacles in 

the field is also extremely challenging since we can’t do it on a pixel by pixel 



basis due to noise from camera. Besides, if we are assuming dynamic 

environment, i.e. obstacles can also change their locations at real time, then 

clearing the BRAM at each new frame might also take some time, and possibly 

we won’t have enough time to clear the memory. 

 

7. main_control_FSM: This is the brain of the system, which takes in position and 

orientation of the vehicle, desired location from the user, positions of obstacles, 

and directs the vehicle to reach the desired destination. The challenge is first the 

physical limitations in the vehicle itself and communication with the vehicle. We 

plan to purchase a remote control car that is able to locally rotate 360 degrees, and 

we are essentially interfacing with the remote control to ask it to send appropriate 

signals for us. This interface might take some time to understand and rigorous 

experiments and tests will be carried out to make sure that the vehicle will be 

controlled correctly. Computation power could be another limiting factor in this 

project; as a result, we restrict our cars to only move in 90 degree directions, 

therefore simple algorithms will be implemented first. For future improvements, 

more search algorithms could be implemented to achieve real optimal path.  

 

3. VCVS Block Diagram 

 

video_decoder 
ntsc_to_zbt 

ZBT 

threshold_filter 

BRAM for obstacles 

 

Main Control FSM 

Display 

grid map 

user_input 

YCrCb to RGB 

X, Y 

orientation 

fvh 

RGB 

address RGB 

User control Xdesired, Ydesired 

location 

location count 

count 

Display mode 

camera 


