Crash Avoidance System

By Kristen Anderson
and Kat Kononov
Motivation

http://wallpaperstock.net/car-crash_wallpapers_5294_1280x1024_1.html

Anderson and Kononov
Objective

- Crash avoidance system
 - Static and dynamic avoidance
- Implemented on RC car
Overview

- Components
 - Labkit
 - RC Car and remote
 - Distance sensors
 - XBee radios
 - IR remote and receiver
Overview

High-level Block Diagram

Anderson and Kononov
Main Modules

FPGA Block Diagram

IR Receiver

Driver Input Processing Module

Controller FSM

Sensor Input Processing Module

Car Command Output Module

Car Remote Control

Receiver XBee

Anderson and Kononov

6
Driver Input Module

RCV Chip → Sampler → Command Receiver FSM → Decoder → Driver Command

Divider

27MHz

Anderson and Kononov
Sensor Input Module

Anderson and Kononov
Command Output Module

Anderson and Kononov
Extension

- Mapping surroundings
- Based on sensor data
Controller FSM

FPGA

IR Receiver

Driver Input Processing Module

Controller FSM

Sensor Input Processing Module

Car Command Output Module

Car Remote Control

Receiver XBee

Anderson and Kononov
Side Object Avoidance

No Right Turn

No Left Turn

No Turn

Anderson and Kononov

Frontal Object Avoidance

- Minimum front distance
- Minimum side distance
- Passive State
- Avoidance Turn
- Avoidance Straight
- Return Turn
- Passive State

Anderson and Kononov
Dynamic Avoidance

Side Avoidance

http://www.designedtoat.com/sports3.shtml

Front and Rear Avoidance

http://www.clker.com/clipart-26981.html

Anderson and Kononov
Parallel Parking

Anderson and Kononov
Schedule

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>sensors and radio mounted</td>
<td>lab closed</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>static avoidance done</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>lab closed for thanksgiving</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>sensors giving data to FPGA</td>
<td>sensor input module done</td>
<td>dynamic avoidance done</td>
<td></td>
<td>lab closed for thanksgiving</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td>30</td>
<td>Dec 1</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>driver input module done</td>
<td>tested on car</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>lab closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>testing and UI extensions done</td>
<td>project check</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>debug and extensions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anderson and Kononov
Conclusion

- Scalable crash avoidance system
 - Distance sensors in all directions
 - Processes all commands sent to the car
- Semi-autonomous features
 - Parallel parking
- Mapping possibilities
Questions?