
Song identification system

Yafim Landa Pranav Sood

1.  Teach the system a set of known songs
•  For example, a Pink Floyd album

2.  Let the system listen to an unknown
piece of music

3.  If the unknown piece of music is from
the known set of songs, tell us more
about it

 Learning mode
◦ Listen to known audio from an MP3 player

through the AC97 codec
◦ Pass through peak detection and store the

peaks in BRAM

 Recognizing mode
◦ Listen to unknown audio from a microphone

through the AC97 codec
◦ Pass through peak detection and search

BRAM

 Sound is sampled at 48kHz with 8bits/
sample

 Create a spectrogram using FFTs
◦ Unscaled, pipelined FFT
◦ F (frequency , time) = intensity
◦ 1024 window size, 50% overlap
◦ 48,000/512 ≈ 90 windows/second

 We chose five frequency ranges to focus on
◦ 0 to 40Hz, 40Hz to 80Hz, 80Hz to 120Hz, 120Hz

to 180Hz and 180Hz to 300Hz
 Look at the spectrogram for each time

window
◦ Extract the maximum frequency from each range
◦ Record these five numbers in the BRAM

 Memory for 2-second song, ¼-second clip
◦ 10kbits for the peaks
◦ 2kbit for the clip

 Received peaks from peak extraction
◦ Song: 180 windows, 5 peaks/window = 900

values
◦ Clip: 22 windows, 5 peaks/window = 110

values

 Want to check whether the clip belongs
to the song

 Strategy: find the best match for the clip
offset within the song

 Call the frequency peaks vector YSong and
YClip
◦ [f1t=1,f2t=1,f3t=1,f4t=1,f5t=1, f1t=2,f2t=2,f3t=2,…]

 Go through the whole song and compare the
Y vectors

 At each offset, calculate the difference
between the song and the clip
◦ sum(abs(sign(YSongClip - YClip)))

 Possibly shift YClip for higher accuracy

50

94

 We may want better precision
◦ We can get the error margin further down by

using a shifting clip

 Lower delta for a match, same delta for a
mismatch
◦ Stays at ~90 for a mismatch
◦ Goes from ~10 to 0 for a perfect match
◦ Goes from 50 to 30 for a noisy match

  Week 1
◦  Read previous work

◦  Plan out an approach to the problem

  Week 2
◦  Begin making the FFT module

◦  Simulate the project in MATLAB

  Week 3 (now)
◦  Begin making the search algorithm in ModelSim

◦  Finish making the FFT module

  Week 4
◦  Finish the search algorithm in ModelSim and begin porting to the labkit

◦  Finish peak extraction

  Week 5
◦  Debug both peak/search independently on the labkit

  Week 6
◦  Debug interconnection between the two modules
◦  Write the user interface on the labkit

