

FPGzAm

Song identification system

Yafim Landa

Pranav Sood

FPGZAM LISTENS TO AUDIO AND TELLS YOU WHETHER IT'S A SONG IT KNOWS ABOUT.

Overview

- I. Teach the system a set of known songs
 - For example, a Pink Floyd album
- 2. Let the system listen to an unknown piece of music
- 3. If the unknown piece of music is from the known set of songs, tell us more about it

Behavior: Two Modes

- Learning mode
 - Listen to known audio from an MP3 player through the AC97 codec
 - Pass through peak detection and store the peaks in BRAM
- Recognizing mode
 - Listen to unknown audio from a microphone through the AC97 codec
 - Pass through peak detection and search

Block Diagram

Peak Extraction

- Sound is sampled at 48kHz with 8bits/ sample
- Create a spectrogram using FFTs
 - Unscaled, pipelined FFT
 - \circ F (frequency, time) = intensity
 - 1024 window size, 50% overlap
 - 48,000/512 ≈ 90 windows/second

Peak Detection

- We chose five frequency ranges to focus on
 - 0 to 40Hz, 40Hz to 80Hz, 80Hz to 120Hz, 120Hz to 180Hz and 180Hz to 300Hz
- Look at the spectrogram for each time window
 - Extract the maximum frequency from each range
 - Record these five numbers in the BRAM
- Memory for 2-second song, 1/4-second clip
 - I0kbits for the peaks
 - 2kbit for the clip

Search

- Received peaks from peak extraction
 - Song: 180 windows, 5 peaks/window = 900 values
 - Clip: 22 windows, 5 peaks/window = 110 values
- Want to check whether the clip belongs to the song
- Strategy: find the best match for the clip offset within the song

Call the frequency peaks vector YSong and YClip

- $\circ [\mathsf{fl}_{t=1}, \mathsf{f2}_{t=1}, \mathsf{f3}_{t=1}, \mathsf{f4}_{t=1}, \mathsf{f5}_{t=1}, \mathsf{fl}_{t=2}, \mathsf{f2}_{t=2}, \mathsf{f3}_{t=2}, \ldots]$
- Go through the whole song and compare the Y vectors
- At each offset, calculate the difference between the song and the clip

 sum(abs(sign(YSongClip - YClip)))
- Possibly shift YClip for higher accuracy

Noisy Sample

Mismatch

Shifting Clip

- We may want better precision
 - We can get the error margin further down by using a shifting clip
- Lower delta for a match, same delta for a mismatch
 - Stays at ~90 for a mismatch
 - Goes from ~10 to 0 for a perfect match
 - Goes from 50 to 30 for a noisy match

Timeline

- Week I
 - Read previous work
 - Plan out an approach to the problem
- Week 2
 - Begin making the FFT module
 - Simulate the project in MATLAB
- Week 3 (now)
 - Begin making the search algorithm in ModelSim
 - Finish making the FFT module
- Week 4
 - Finish the search algorithm in ModelSim and begin porting to the labkit
 - Finish peak extraction
- Week 5
 - Debug both peak/search independently on the labkit
- Week 6
 - Debug interconnection between the two modules
 - Write the user interface on the labkit