A Controllable Function Generator

Sarah Ferguson Gavin Darcey Fall 2010

Overview

Amplitude: 3 V

Frequency: 100 Hz

Duty Cycle: N/A %

Block Diagram

Waveform FSM

- Inputs: waveform type, freq, amp (buttons)
- Outputs:
 - 8 bits to DAC
 - freq, amp, duty cycle (to display module)
- 4 modes of operation (sub-FSMs)
 - Square: alternate between 2 values
 - Ramp: count up to a value, reset to 0
 - Triangle: count up, count back down
 - Sine: most difficult, using CoreGen sin function

CoreGen

- Uses LUT to calculate sin(Θ)
- Stores half or quarter wave on dist. ROM
- Limited to 8 bits of output to DAC
- Using 10 bits of input for Θ to make as smooth a curve as possible
- ▶ 80 core resource utilization...not much

DAC

- 8 bits, Analog Devices AD7224
- Settling time of 7 μ s => max freq 142 kHz
 - Our range: 100 Hz 100 kHz
- ▶ Can swing from 0V to (255/256)V_{REF}
 - Our range: 0V to 5V

Video

- ▶ 50 MHz System Clock
- Images from Image RAM
 - bitmap converted to RGB values in MATLAB
- Real time images
 - uses output from Waveform FSM
- Implementation of mouse control

Timeline

- Sunday 11/21
 - square, ramp, triangle waves functional
 - video module completely coded and tested using Image RAM
- Wednesday 11/24
 - sine wave functional
- Sunday 11/28
 - include real time images and basic mouse control
- Wednesday 12/1
 - integrate systems to make sure display and generation are synchronized
- Monday 12/6
 - testing complete and system functional, additional mouse control added
- Checkoff 12/7–12/9