
6.111 Final Project Status Report
Adam Gleitman, Andrew Shum, Tim Balbekov

OVERALL

Safety Goals

● Capture static left and right images of an object and store a single, anaglyph-filtered
frame into the front buffer ZBT

● Display a static anaglyph image onto the screen from this buffer
● Track the location of a dot on two camera frames and triangulate its location in three-

dimensional space
● Translate a gestural motion to a change in virtual camera position
● Render a 2D image of a wire-frame polyhedron as viewed from a hard-coded virtual

camera position

Ambitious Goals

● Continually capture left and right images of an object and store a single, live-updated,
anaglyph-filtered frame into the front buffer ZBT

● Provide a live anaglyph feed onto the screen from this buffer
● Obtain more advanced virtual camera movements, such as rotation and panning, by

tracking more dots
● Render a 2D image of a wire-frame polyhedron as viewed from a virtual camera position

specified using gestural motion

TIM
Checkoff List

● NTSC decoder controller automatically switches between two video feeds after a video
field is recorded.

● Frame grabber converts NTSC signal to appropriate RGB values, and stores them to
ZBT via the ZBT controller.

● ZBT Controller generates appropriate SRAM control signals in ModelSim.
● ZBT Controller has a functional hardware implementation, and timing constraints for the

safety goal are met.
● ZBT controller copies from back to front buffer, prioritizing front buffer read access to the

VGA controller, and back buffer write access by the frame grabber.

ANDREW

Checkoff List

● Demonstrate test jig with left pixel / right pixel as input into Anaglyph Filter module and
resultant pixel as output. Validate the accuracy of the anaglyph rendering using a Python
script and the Python Imaging Library

● Demonstrate test jig with hard-coded virtual camera position as input and 3D rendering
frame data as output. Validate the accuracy of the wire-frame rendering using a Python
script and the Python Imaging Library

● Demonstrate VGA controller rendering hard-coded anaglyph images and wire-frame

polyhedron models onto the screen. Verilog code for hard-coding these images into
memory will be generated with a Python script

ADAM
Checkoff List

● Track the location of a single dot on a single camera frame using a center of mass
calculator

● Calculate the position of a dot in three-dimensional given two centers of mass as seen
from two different camera angles

● Translate a dot position into a change in a virtual camera angle
● Demonstrate functionality of modules using test jigs and live testing

