Project Proposal
Augmented Reality Image Processing System

Logan P. Williams & José E. Cruz Serrallés

November 15, 2011

Abstract

We will implement an augmented reality system that can overlay a digital image on video of a real world
environment. We read NTSC video from a video camera and store it in ZBT SRAM. A picture frame
with colored markers on the corners is held in front of the camera. We then perform chroma-based object
recognition to locate the coordinates of the corners. Using these coordinates, we apply a low-pass filter and
a projective transformation to project an image onto the dimensions of the picture frame. We then output

VGA video of the original captured image, with the processed image overlayed on top of the frame.

Contents

1 Introduction 2

2 Submodules 2
2.1 mntsc_capture (Logan) 2
2.2 memory_interface (JoS€) 3
2.3 object_recognition (Logam) L 3
2.4 LPF (JOs6) . . o o i 4
2.5 projective_transform (Logan) 4
2.6 vgawrite (José) 6

3 External Components 6

4 Project Deadlines 6

1 Introduction

The augmented reality image processing system has six primary modules. The memory_interface module
handles reading and writing from the ZBT memory, so that it can be abstracted away from the other modules.
Raw video is read from the video camera by the ntsc_capture module, which also finds pixels that match
the colors on the corners of the frame. These pixels are read by the object_recognition module which finds
the center of mass of the frame corners, and calculates the downsampling coefficients in each direction. The
LPF module performs the low pass filtering in two stages, described in detail below. On the second stage,
it sends each pixel “on-the-fly” to the projective_transform module which then sends that pixel’s new
coordinates to the memory_interface module to be written. The vga_write module reads and transmits
the VGA data to be generated by the video DAC.

memory_interface
done_ntsc >
A A
[35:0] captured_pixels [9:0] Ipf_x
frame_flag pixel_flag (8:0] Ipf_y frame_flag [17:0] pixel_vga
done_lpf [35:0] Ipf_pixel_write
v [35:0] pixel_read v Ipf_wr request_pixel
ntsc_capture Ip vga_write 1
|—D f it —+
frame_flag #) done_pt
[1:0] color N 9:0] pt x
[9:0] @nterest!ng_x [9:0] m_x E;TO?lfgﬁl %8:0% zt:y frame_flag
[8:0] interesting_y [8:0] m_y [8:0] y_out [17:0] pt_pixel_write
interesting_flag request pixel_flag pt_wr
\ \ Y
object_recognition > projective_transform
[9:0] a_x
A [8:0]a_y
[9:0] b_x
[8:0] b_y
[8:0] c_x frame_fla
frame_flag [8:0]c_y _tlag
[9:0]d_x
[8:0] d_y

Figure 1: The block diagram of the augmented reality system.

2 Submodules

2.1 ntsc_capture (Logan)

The ntsc_capture module decodes NTSC Composite video using an Analog Devices ADV7185 video ADC
and sends pixels in luminance/chrominance color space to memory_interface to be written into a ZBT
memory frame buffer.

Additionally, when the ntsc_capture module sees a color that matches the target (blue, green, red, and
yellow), it sends the color and the X/Y location of the pixel to the object_recognition module. It also
sends a flag that goes high when the entire frame has been captured, and a new one is beginning. The exact

names of these outputs, and of every input/output described below can be seen on the block diagram above.

This module can be tested by connecting it to the vga_write module and ensuring that the video output

is the image seen by the video camera.

2.2 memory_interface (José)

The memory_interface module handles the interaction between all of the other modules and the two ZBT
Memory blocks, which house the four images that the modules use for capturing, displaying, and processing.
Ideally, BRAM would have been used, but the number of pixels that we would like to store vastly exceeds
BRAM capacity. Unlike BRAM, each ZBT Memory block can only handle one read or write operation per
cycle, causing memory access to be the main bottleneck of our system. As such, we will store only the six
most significant bits of each component of every pixel, allowing us to store two pixels per address and to
reduce the number of memory accesses in our system by a factor of two. The number of required memory
acceses per module and the distribution of the images in the RAM necessitates a minimum clock frequency
of 50.7MHz, which is reasonable given the propagation delays of multipliers and other elements.

memory_interface will allocate two images per memory block. These four images will be (1) capture, the
image being captured from NTSC; (2) display, the image being displayed in the VGA; (3) processing, the im-
age that will be processed by LPF; and (4) next_display, the image to which projective_transform will write
and the next image that will be displayed. Every image refresh (1/30 seconds), the previous next_display,
display, capture, and processing image locations will become the next display, processing, next_display, and
capture image locations, respectively. These location shifts will be transparent to the other modules. Read
and write requests from vga_write and ntsc_capture will be given priority over requests from other modules.

The inputs to memory_interface are (1) frame flag, which signals when to shift; (2) two pixels from
ntsc_capture; (3) two (x,y) pairs, one from LPF and one from projective_transform; (4) two pixels
from LPF; (5) one pixel from projective_transform; and (6) request flags and (7) write flags from other
submodules. The outputs from memory_interface are (1) done flags; (2) one pixel to vga_write; and (3)
two pixels to LPF.

memory_interface will be tested in stages. Initially, basic read and write functionality will be assessed
in simulation and then on the FPGA. Once we have written and read information from the ZBT RAM
successfully, we will attempt to write, read, and display an image. Finally, all of the logic pertaining to
handling read and write requests from all the modules simulatenously will be written, tested using extensive
testbenches, and finally tested on an FPGA with dummy modules. All of this testing should avoid help us

avoid headaches during final integration.

2.3 object_recognition (Logan)

The object_recognition module collects “interesting” pixels located by the NTSC Capture module, and
calculates the center of mass of each color, to find the location of the corners of the picture frame.

It takes as inputs (1) the color of a detected pixel, (2) a flag that goes high for one clock cycle when a
pixel is detected, (3) the X/Y coordinates of the pixel, and (4) a flag that goes high when a new frame is
beginning. It produces as output four sets of X/Y coordinates, one for the center of mass of each color.

The center of mass will be calculating with a simple linear weighting scheme, averaging the X and the

Y coordinate for each pixel independently to find the center X/Y location, which are used by the LPF and

the projective_transfom module. This module can be tested with a simple test bench that provides some

sample pixel locations, and tests to see if the module computes the center of mass correctly.

2.4 LPF (José)

The LPF module’s sole purpose is to apply a lowpass filter (LPF) to the processing image so as to avoid
aliasing when projective_transform skews the image. The following steps detail the operation of LPF
every image refresh cycle (1/30 seconds): (1) Load the filter coefficients of a 1D LPF with cutoff frequency
Aijy. (2) Apply this filter to each column of processing and store each column once again in processing.
(3) Load the filter coefficients of a 1D LPF with cutoff frequency i (4) Apply this filter to each row of
processing but instead feed the output pixels to projective,transfbrm. (5) Wait for the next cycle. The
image data will be buffered in BRAM, such that LPF accesses memory 1.5 times per pixel.

The inputs to LPF are (1) M, and (2) M, the downsampling coefficients; (3) frame_flag, which signals
when to start filtering; (4) the done pulse and (5) the pixels from memory_interface; and (5) the request
from projective_transform. The outputs from LPF to memory_interface are (1) the write signal, (2) the
pixels to be written, and the (3) (x,y) coordinates of the leftmost written pixel. The outputs from LPF
to projective_transform are (1) the pixel flag, which signals when a new pixel is available; (2) the (x,y)
coordinates of this new pixel; and (3) the new pixel.

The lowpass filters that will be used will be finite impulse response (FIR) Parks-McClellan filters. Most
of the information contained in an image is contained in its phase. FIR filters were chosen because they
can be made so as to have no effect on the phase of the image, preserving most of the information. Parks-
McClellan filters were chosen because they are highly adaptable and easily calculated with MATLAB. The
filter coefficients will be stored in BRAM for easy access. Because FIR will only be filtering the luminance
component of each pixel, the order, N, of these filters will only be constrained by the number of multipliers
on the FPGA and the number of multipliers used in other modules. The symmetry of these filters will be
exploited, requiring only % + 1 multiplications per pixel. We are aiming for filters of order 100, though filters
of order 50 or greater will suffice.

Because LPF is used only to make the output look nice, LPF will be delegated to the end of the project.
Given enough time, this module will be written and tested extensively with progressively more complicated
testbenches. The initial testbench will apply to filter to an image with one white pixel, with all cutoff
coefficients. The outputs of this testbench should match the coefficients in the BRAM. Once the module
passes these tests, LPF will be used on more complicated images, and the output will be compared to the

ideal output with MATLAB. In these testbenches, different memory access cases will be tested, as well.

2.5 projective transform (Logan)

The inputs to projective_transform are (1) the pixel value last produced by LPF, (2) a flag signal held
high for one clock signal when LPF has processed a new pixel, (3) the four coordinates of the corners of the
frame provided by the object_recognition module, and (4) a signal when a new frame is beginning.

The outputs from projective_transform are (1) a request to LPF for a new pixel, (2) the X/Y coordinates
of the transformed pixel, (3) the transformed pixel value, and (4) a flag indicating that a new pixel is to be

written.

This function maps the original rectangular image to any convex quadrilateral, provided that all sides of
the destination quadrilateral are shorter than the original, which is inherent in the overall system. A graphic

representation of the transformation is shown in Figure 2.

A BA’

o’

D’

Figure 2: A visual representation of the result of the projective_transform module. Input is on the left, a
possible output, for four coordinates At, Bl, Ct, and D/ is on the right.

Mathematically, the algorithm works as follows:

Calculate the distance of line A7Dr and assign it to dggq.

Do the same for B/C’ and assign it to dj..

Create two “iterator points,” point I4 and I initially located at A/ and B.
Let 0, =0 and 0oy, = 0

Calculate the distance between the iterator points, assign it to d;.

Create a third iterator point, I at the location I4.

Assign the pixel value of I to pixel (oz,0y) in the original image.

d;

Move I¢ along line [4Ip by an amount = ——%——.
w'Ldthoriginal

© 0 NSO E N

Increment o,.

,_.
e

Repeat steps 7-9 until Ic = Ig.
dad
heightoriginal '

. Move I along line B/C7 by an amount = ——dte
hElghtorig'inal

—_
—_

. Move I, along line A7D/ by an amount =

—_ =
[JCIN \V)

. Increment o,.
14. Repeat steps 5-13 until 14 = D/ and Ig = C!.

This algorithm needs a relatively small number of multiplications: two per pixel in the original image
(2 x 640 x 480), and four per line in the original image (4 x 480). There is also a square root required once
per line, that will be implemented using a standard iterative algorithm.

The projective_transform module can be tested by creating a test bench that provides a series of test
pixels as input. The output generated in ModelSim by projective_transform can then be compared with

the output generated by a MATLAB implementation of the algorithm described above.

2.6 vgawrite (José)

The vga write section is straightforward and will basically be a clone of the VGA code used in Lab 2
(Pong). Essentially, the output will be refreshed at a rate of 60Hz and output at a resolution of 640x480

pixels. This module will read the pixel values from displayed image and assign it based on the hcount and
vcount variables, which will be incremented accordingly. The clock signal used for this module will be
synthesized with the ISE’s toolkit. This module will be tested by loading a standardized image to memory

and verifying whether vga write displays this image properly on the monitor.

3 External Components

We will be using two standard external components: a video camera that provides NTSC composite video
out, to be provided by the 6.111 staff, and a VGA display, available in the 6.111 lab.

4 Project Deadlines

11-11-2011 Finalized block diagram
11-18-2011 First drafts of projective_transform and memory_interface written

11-22-2011 First drafts of object_recognition, LPF, vga_write, and ntsc_capture first drafts written;

projective_transform and memory_interface fully tested
11-28-2011 ntsc_capture and vga_write fully tested; start of basic integration
11-31-2011 object_recognition and LPF fully tested; start of full integration
12-05-2011 Full integration complete

12-12-2011 Final report due

