
Project Proposal

Augmented Reality Image Processing System

Logan P. Williams & José E. Cruz Serrallés

November 15, 2011

Abstract

We will implement an augmented reality system that can overlay a digital image on video of a real world

environment. We read NTSC video from a video camera and store it in ZBT SRAM. A picture frame

with colored markers on the corners is held in front of the camera. We then perform chroma-based object

recognition to locate the coordinates of the corners. Using these coordinates, we apply a low-pass filter and

a projective transformation to project an image onto the dimensions of the picture frame. We then output

VGA video of the original captured image, with the processed image overlayed on top of the frame.

Contents

1 Introduction 2

2 Submodules 2

2.1 ntsc capture (Logan) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 memory interface (José) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 object recognition (Logan) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.4 LPF (José) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.5 projective transform (Logan) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.6 vga write (José) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 External Components 6

4 Project Deadlines 6

1



1 Introduction

The augmented reality image processing system has six primary modules. The memory interface module

handles reading and writing from the ZBT memory, so that it can be abstracted away from the other modules.

Raw video is read from the video camera by the ntsc capture module, which also finds pixels that match

the colors on the corners of the frame. These pixels are read by the object recognition module which finds

the center of mass of the frame corners, and calculates the downsampling coefficients in each direction. The

LPF module performs the low pass filtering in two stages, described in detail below. On the second stage,

it sends each pixel “on-the-fly” to the projective transform module which then sends that pixel’s new

coordinates to the memory interface module to be written. The vga write module reads and transmits

the VGA data to be generated by the video DAC.

Figure 1: The block diagram of the augmented reality system.

2 Submodules

2.1 ntsc capture (Logan)

The ntsc capture module decodes NTSC Composite video using an Analog Devices ADV7185 video ADC

and sends pixels in luminance/chrominance color space to memory interface to be written into a ZBT

memory frame buffer.

Additionally, when the ntsc capture module sees a color that matches the target (blue, green, red, and

yellow), it sends the color and the X/Y location of the pixel to the object recognition module. It also

sends a flag that goes high when the entire frame has been captured, and a new one is beginning. The exact

names of these outputs, and of every input/output described below can be seen on the block diagram above.

2



This module can be tested by connecting it to the vga write module and ensuring that the video output

is the image seen by the video camera.

2.2 memory interface (José)

The memory interface module handles the interaction between all of the other modules and the two ZBT

Memory blocks, which house the four images that the modules use for capturing, displaying, and processing.

Ideally, BRAM would have been used, but the number of pixels that we would like to store vastly exceeds

BRAM capacity. Unlike BRAM, each ZBT Memory block can only handle one read or write operation per

cycle, causing memory access to be the main bottleneck of our system. As such, we will store only the six

most significant bits of each component of every pixel, allowing us to store two pixels per address and to

reduce the number of memory accesses in our system by a factor of two. The number of required memory

acceses per module and the distribution of the images in the RAM necessitates a minimum clock frequency

of 50.7MHz, which is reasonable given the propagation delays of multipliers and other elements.

memory interface will allocate two images per memory block. These four images will be (1) capture, the

image being captured from NTSC; (2) display, the image being displayed in the VGA; (3) processing, the im-

age that will be processed by LPF; and (4) next display, the image to which projective transform will write

and the next image that will be displayed. Every image refresh (1/30 seconds), the previous next display,

display, capture, and processing image locations will become the next display, processing, next display, and

capture image locations, respectively. These location shifts will be transparent to the other modules. Read

and write requests from vga write and ntsc capture will be given priority over requests from other modules.

The inputs to memory interface are (1) frame flag, which signals when to shift; (2) two pixels from

ntsc capture; (3) two (x,y) pairs, one from LPF and one from projective transform; (4) two pixels

from LPF; (5) one pixel from projective transform; and (6) request flags and (7) write flags from other

submodules. The outputs from memory interface are (1) done flags; (2) one pixel to vga write; and (3)

two pixels to LPF.

memory interface will be tested in stages. Initially, basic read and write functionality will be assessed

in simulation and then on the FPGA. Once we have written and read information from the ZBT RAM

successfully, we will attempt to write, read, and display an image. Finally, all of the logic pertaining to

handling read and write requests from all the modules simulatenously will be written, tested using extensive

testbenches, and finally tested on an FPGA with dummy modules. All of this testing should avoid help us

avoid headaches during final integration.

2.3 object recognition (Logan)

The object recognition module collects “interesting” pixels located by the NTSC Capture module, and

calculates the center of mass of each color, to find the location of the corners of the picture frame.

It takes as inputs (1) the color of a detected pixel, (2) a flag that goes high for one clock cycle when a

pixel is detected, (3) the X/Y coordinates of the pixel, and (4) a flag that goes high when a new frame is

beginning. It produces as output four sets of X/Y coordinates, one for the center of mass of each color.

The center of mass will be calculating with a simple linear weighting scheme, averaging the X and the

Y coordinate for each pixel independently to find the center X/Y location, which are used by the LPF and

3



the projective transfom module. This module can be tested with a simple test bench that provides some

sample pixel locations, and tests to see if the module computes the center of mass correctly.

2.4 LPF (José)

The LPF module’s sole purpose is to apply a lowpass filter (LPF) to the processing image so as to avoid

aliasing when projective transform skews the image. The following steps detail the operation of LPF

every image refresh cycle (1/30 seconds): (1) Load the filter coefficients of a 1D LPF with cutoff frequency
π
My

. (2) Apply this filter to each column of processing and store each column once again in processing.

(3) Load the filter coefficients of a 1D LPF with cutoff frequency π
Mx

. (4) Apply this filter to each row of

processing but instead feed the output pixels to projective transform. (5) Wait for the next cycle. The

image data will be buffered in BRAM, such that LPF accesses memory 1.5 times per pixel.

The inputs to LPF are (1) Mx and (2) My, the downsampling coefficients; (3) frame flag, which signals

when to start filtering; (4) the done pulse and (5) the pixels from memory interface; and (5) the request

from projective transform. The outputs from LPF to memory interface are (1) the write signal, (2) the

pixels to be written, and the (3) (x,y) coordinates of the leftmost written pixel. The outputs from LPF

to projective transform are (1) the pixel flag, which signals when a new pixel is available; (2) the (x,y)

coordinates of this new pixel; and (3) the new pixel.

The lowpass filters that will be used will be finite impulse response (FIR) Parks-McClellan filters. Most

of the information contained in an image is contained in its phase. FIR filters were chosen because they

can be made so as to have no effect on the phase of the image, preserving most of the information. Parks-

McClellan filters were chosen because they are highly adaptable and easily calculated with MATLAB. The

filter coefficients will be stored in BRAM for easy access. Because FIR will only be filtering the luminance

component of each pixel, the order, N , of these filters will only be constrained by the number of multipliers

on the FPGA and the number of multipliers used in other modules. The symmetry of these filters will be

exploited, requiring only N
2 +1 multiplications per pixel. We are aiming for filters of order 100, though filters

of order 50 or greater will suffice.

Because LPF is used only to make the output look nice, LPF will be delegated to the end of the project.

Given enough time, this module will be written and tested extensively with progressively more complicated

testbenches. The initial testbench will apply to filter to an image with one white pixel, with all cutoff

coefficients. The outputs of this testbench should match the coefficients in the BRAM. Once the module

passes these tests, LPF will be used on more complicated images, and the output will be compared to the

ideal output with MATLAB. In these testbenches, different memory access cases will be tested, as well.

2.5 projective transform (Logan)

The inputs to projective transform are (1) the pixel value last produced by LPF, (2) a flag signal held

high for one clock signal when LPF has processed a new pixel, (3) the four coordinates of the corners of the

frame provided by the object recognition module, and (4) a signal when a new frame is beginning.

The outputs from projective transform are (1) a request to LPF for a new pixel, (2) the X/Y coordinates

of the transformed pixel, (3) the transformed pixel value, and (4) a flag indicating that a new pixel is to be

written.

4



This function maps the original rectangular image to any convex quadrilateral, provided that all sides of

the destination quadrilateral are shorter than the original, which is inherent in the overall system. A graphic

representation of the transformation is shown in Figure 2.

Figure 2: A visual representation of the result of the projective transform module. Input is on the left, a
possible output, for four coordinates A′, B′, C′, and D′ is on the right.

Mathematically, the algorithm works as follows:

1. Calculate the distance of line A′D′ and assign it to dad.

2. Do the same for B′C′ and assign it to dbc.

3. Create two “iterator points,” point IA and IB initially located at A′ and B′.
4. Let ox = 0 and oy = 0

5. Calculate the distance between the iterator points, assign it to di.

6. Create a third iterator point, IC at the location IA.

7. Assign the pixel value of IC to pixel (ox, oy) in the original image.

8. Move IC along line IAIB by an amount = di
widthoriginal

.

9. Increment ox.

10. Repeat steps 7–9 until IC = IB .

11. Move IA along line A′D′ by an amount = dad

heightoriginal
.

12. Move IB along line B′C′ by an amount = dbc
heightoriginal

.

13. Increment oy.

14. Repeat steps 5–13 until IA = D′ and IB = C′.

This algorithm needs a relatively small number of multiplications: two per pixel in the original image

(2× 640× 480), and four per line in the original image (4× 480). There is also a square root required once

per line, that will be implemented using a standard iterative algorithm.

The projective transform module can be tested by creating a test bench that provides a series of test

pixels as input. The output generated in ModelSim by projective transform can then be compared with

the output generated by a MATLAB implementation of the algorithm described above.

2.6 vga write (José)

The vga write section is straightforward and will basically be a clone of the VGA code used in Lab 2

(Pong). Essentially, the output will be refreshed at a rate of 60Hz and output at a resolution of 640x480

5



pixels. This module will read the pixel values from displayed image and assign it based on the hcount and

vcount variables, which will be incremented accordingly. The clock signal used for this module will be

synthesized with the ISE’s toolkit. This module will be tested by loading a standardized image to memory

and verifying whether vga write displays this image properly on the monitor.

3 External Components

We will be using two standard external components: a video camera that provides NTSC composite video

out, to be provided by the 6.111 staff, and a VGA display, available in the 6.111 lab.

4 Project Deadlines

11-11-2011 Finalized block diagram

11-18-2011 First drafts of projective transform and memory interface written

11-22-2011 First drafts of object recognition, LPF, vga write, and ntsc capture first drafts written;

projective transform and memory interface fully tested

11-28-2011 ntsc capture and vga write fully tested; start of basic integration

11-31-2011 object recognition and LPF fully tested; start of full integration

12-05-2011 Full integration complete

12-12-2011 Final report due

6


