6.111 Final Project Project Checklist

Logan P. Williams
José E. Cruz Serrallés

21 November 2011
projective_transform: processes a stream of incoming pixels, skewing, rotation, and scaling the image by generating new (x, y) coordinates for each pixel corresponding to the four corners of the frame. (Logan)

Correctly calculates distances and iterator incrementors, using the sqrt and divide submodules.Sends a signal to LPF to request new data when initial frame calculations have been done.Generate one new set of coordinates per clock cycle and transmit to memory_interface.
\square Pipelines square root and division calculations so that there is no delay for each new line.Pauses appropriately when memory_interface cannot handle new data.
Can handle "unexpected" new frame events.
object_recognition: average the (x, y) tuples for each pixel that matches one of four $\mathrm{Cr} / \mathrm{Cb}$ regions of interest. (Logan)Sums the coordinates of each color that it receives.Correctly averages each coordinate.Outputs the list of coordinates and a flag immediately after ntsc_capture has finished processing a frame and the divide submodules have finished their averaging operations.
\square Output "fake" downsampling coefficients based on linear estimates of distance.(Time permitting:) Generate and output M_{x} and M_{y} downsampling coefficients after a frame has been captured.
memory_interface: efficiently interfaces with the memory and all of the modules that have to write to and read from ZBT memory. (José)
\square Writes to memory data from ntsc_capture.
\square Reads from memory an image to vga_display.
\square Outputs to and captures data from LPF.
\square Captures data from projective_transform.
\square Shifts data locations when ntsc_capture starts providing a new image.
\square (Time permitting:) Reads an image from flash memory and stores it in RAM for use as the transformed image.

LPF: applies lowpass filters, vertically and horizontally, on the image that is to be warped, in order to prevent aliasing at the output. (José)
\square (Out of time:) Just fetches pixels from memory and feeds them to projective_transform. LPF does not filtering.Loads appropriate filter coefficients based on the coefficients M_{x} and M_{y} from object_recognition.Reads data from memory vertically and horizontally, and has the necessary data for the calculation of each output pixel in its buffers.Mirrors the data appropriately in its buffers when processing near an edge.Outputs to memory_interface a pair of pixels that correspond to the convolution sum of the corresponding data.
ntsc_capture: process the incoming video stream and send pixels in sets of two to memory_interface (Logan)Capable of reading the incoming video stream from the video ADC.Can transmit pixels to vga_display for immediate display.Saves full color data.Lumps pixels into groups of two to transmit to memory_interface.
Recognizes pixels matching specific regions of the $\mathrm{Cr} / \mathrm{Cb}$ plane, and transmits that information to object_recognition.
vga_display: fetches data from memory and displays it on the screen. (José)Displays a predefined pattern on the screen.Requests a pixel one video clock cycle before it is needed.Reads an image from memory, through memory_interface, and correctly displays it on the screen.

