Spatiotemporal Video Amplification

6.111 Final Project Presentation
Akashnil Dutta, Rishi Patel, Pranav Kaundinya
See the Invisible

Color Amplification
Motivation

- Improvements in camera technology have enabled capturing of small changes
- These changes are often invisible to the naked eye
- Real time video processing is computation intensive
Applications

• Biomedical Imaging
• Medical Monitoring Systems
• Physics and Chemistry Research
• Surveillance
• Sports
Theory: Temporal Amplification

- Input at $T = t$
- Input at $T = t + 1$
- Output at $T = t + 1$

Intensity (I) vs Position (x)
Theory: Temporal Amplification

- Input at $T = t$
- Input at $T = t + 1$
- Output at $T = t + 1$

The diagram shows a graph with axes labeled 'Intensity (I)' and 'Position (x)'. The partial derivative of intensity with respect to time ($\frac{\partial I}{\partial t}$) and a lambda ($\lambda$) times the partial derivative of intensity with respect to time ($\lambda \frac{\partial I}{\partial t}$) are also indicated.
Theory: Spatial Amplification

- Input at $T = t$
- Input at $T = t + 1$
- Output at $T = t + 1$

Intensity (I) vs. Position (x)
Theory: Spatial Amplification
Theory: Spatial Amplification

- Input at $T = t$
- Input at $T = t + 1$

$$\frac{dx}{dt} = \frac{\partial I}{\partial t} = \frac{\partial I}{\partial x}$$
Theory: equations

\[J(x, y, t) = \]

\[I \left(x + \lambda \frac{\partial I}{\partial t}, y + \lambda \frac{\partial I}{\partial y}, t \right) + \mu \frac{\partial I}{\partial t} \] \hspace{1cm} (1)

\[J(x, y) = I(x + \lambda \frac{I(x, y, t) - I(x, y, t - k)}{I(x, y, t) - I(x - k, y, t)}, t) \]

\[y + \lambda \frac{I(x, y, t) - I(x, y, t - k)}{I(x, y, t) - I(x, y - k, t), t) \]

\[+ \mu \frac{I(x, y, t) - I(x, y, t - k)}{k} \] \hspace{1cm} (2)
Hardware Implementation
Software Prototyping
Temporal Amplification
Software Prototyping
Spatial Amplification
Software Prototyping
Handling Noise
Timeline

– Week of Nov 12th –
 • ZBT RAM and preprocessing modules will be implemented.

– Nov 19th –
 • Demonstrate temporal amplification on grayscale images

– Nov 29th –
 • Demonstrate spatial amplification on grayscale images.

The remaining time will be used for testing and debugging. If time permits we will modify our design for full color operation and/or frequency selective capabilities.