
6.111 Final Project Report

Motionamp
A Spatiotemporal Video Amplifier

Akashnil Dutta, Rishi Patel, Pranav Kaundinya

I. Introduction

Visualizing small changes that are often indiscernible to the human eye is an interesting challenge in video
processing. Given that modern cameras have the ability to detect minute motions, processing video to amplify
these motions can give significant insight. In order to understand what types of information we can extract
we must first define what we mean by video amplification; there are two main classes of video amplification
in this paper. The first is temporal amplification which amplifies the changes in time at each pixel of an
input video. For example, in a video, if a dim light gets brighter by only a small amount, the amplified
output will show a much brighter light. We distinguish this from spatial amplification, which exaggerates the
translational motion of objects in a video. However, in reality, both of these types of amplification go hand
in hand - temporal amplification is one component of spatial amplification.

Spatiotemporal video amplification has a wide range of applications. For instance, in biological imaging
of cells, it enables scientists to visualize tiny movements as seen through a microscope. Other interesting
applications include medical imaging, experimental physics and even non-scientific applications such as sports.
With intensity amplification, one can see the changes in blood-flow as amplified changes in facial color
and measure heart-rate. In physics experiments, spatiotemporal amplification can allow weak and barely
noticeable events to be detected and analyzed. In real-time sports analysis, it is possible to magnify tiny
motions of a ball or object hitting a target.

This project implements a real-time video-processing system that enhances small changes in videos. We
decided to implement this system in hardware (on an FPGA) because real-time video processing is com-
putationally intensive and often impossible in software. Our system implements discrete-time equations to
obtain and amplify the effect of translational and temporal changes on intensity. We demonstrate spatial
and temporal amplification on the same system, so that the user can switch between the amplification type
according to his or her needs.

Our report is organized as follows: We begin with an explanation of the theory behind our project and
equations we implemented, highlighting how temporal changes coupled with knowledge of spatial changes
can let us amplify motion. Next, we present software simulations from MATLAB that we used to verify our
theoretical framework. We then describe the hardware implementation followed by some of the challenges
we faced, and possible extensions.

1



6.111 Final Project Report

II. Theory

In this section we’ll discuss the theoritical basis of
amplitude magnification. The main idea is to com-
pute the rate of change of intensity or the position
with respect to time and add it back to the original
signal multiplied by a suitable gain factor.

Assume that the video input is represented as a
continuously differentiable (C1) function

I : [0, X]× [0, Y ]× [0, T ]→ V

such that I(x, y, t) represents the intensity of pixel
(x, y) at time t. V can be either a scalar field for
a grayscale video or in general a vector space with
RGB components for a colored video. We want to
obtain a function J(x, y, t) from I which amplifies
the small changes in I with respect to time.

First consider the problem of magnitude ampli-
fication. In this case, we can amplify the temporal
variation of each point independently. We just add
a gain of µ to rate of change of I with respect to
time.

J(x, y, t) = I(x, y, t) + µ
∂I

∂t
(x, y, t)

To extend this to motion amplification, we will
first consider I in an implicit form, f(x, y, z, t) =

I(x, y, t)−z. The video stream is precisely the space
of solutions of the equation f = 0. In general we
want to map each point (x, y) and magnitude z to
another point and magnitude (x′, y′) and a corre-
sponding magnitude z′ so that

x′ = x+ λ
dx

dt
, y′ = y + λ

dy

dt
, z′ = z + µ

dz

dt

Here, λ is the translational gain factor. The deriva-
tives are obtained by implicit differentiation of the
constraint relation f(x, y, z, t) = 0, i.e.

dx

dt

∣∣∣∣
f=0

= − ∂f/∂t
∂f/∂x

etc. Let the partial derivatives ∂I
∂x ,

∂I
∂y ,

∂I
∂t by

Ix, Iy, Iz respectively. We can simplify the above as

dx

dt
= − It

Ix
,
dy

dt
= − It

Iy
,
dz

dt
= It

Hence we get

x′ = x− λIt/Ix
y′ = y − λIt/Iy
z′ = z + µIt

To produce an output video from this mapping, we
need to find the intensity z′ of an arbitrary point
(x′, y′) in the proposed image. To do that, we
first find pre-image point (x, y) in the original im-
age from (x′, y′) of the proposed image, then take
z = I(x, y, t) and use the forward mapping to get
proposed magnitude z′ from z.

Then we get that the inverse of (x′, y′) is approxi-
mately (x′+λIt/Ix, y

′+λIt/Iy).1 The corresponding
z for (x, y) is then given by I(x′+λIt/Ix, y′+λIt/Iy).
The image of this under the map is z + µIt. Hence
the final function is given by

J(x, y, t) =

I

(
x+ λ

∂I/∂t

∂I/∂x
, y + λ

∂I/∂t

∂I/∂y
, t

)
+ µ

∂I

∂t
(1)

In the discrete domain this formula is equivalent
to

J(x, y) = I(x+ λ
I(x, y, t)− I(x, y, t− k)
I(x, y, t)− I(x− k, y, t)

,

y + λ
I(x, y, t)− I(x, y, t− k)
I(x, y, t)− I(x, y − k, t)

, t)

+µ
I(x, y, t)− I(x, y, t− k)

k
(2)

Here k is a parameter which specifies the window
length for calculating the derivative. Its value de-
pends on the noise characteristics. It is also possible
to correct for noise with multiple data points using
Richardson Extrapolation for instance.

1 Here we are making an assumption that
Ix, Iy, It values are the same at (x′, y′, t′) as (x, y, t).
This assumption does not work well for large λ, but
makes the processing simpler in our implementation.
However, it is not necessary to assume this for the
theoritical treatment. We can invert the mapping
exactly to do this as well, at the cost of a more com-
plex hardware.

2



6.111 Final Project Report

III. Prototyping

Before designing our hardware implementation, we
needed to verify our ideas with software prototyp-
ing. First we verified that our temporal amplifica-
tion algorithm would amplify changes in intensity in
an input video. Our test case consisted of a video
of a computer desktop background rapidly chang-
ing intensity after a few seconds (from a darker to
lighter shade of gray). To verify that the output
is as we expect, we played our input and output
(processed) videos together on the computer screen.
While the unprocessed video showed a barely dis-
cernible change of shading (from dark to light gray),
the amplified output showed a saturated transition.
That is, the region on the screen where the change
occurred saturated to white (maximum pixel value)
thereby making the change much easier to see. The
implementation consisted of taking differences of
input pixel intensities at two different time steps,
multiplying this difference by a constant gain, and
adding to the current pixel intensity. One can see in
the plots shown in figure 2 that the intensity step is
magnified in the output image, converging back to
original with time. This verified that as expected,
temporal amplification would work in principle.

Likewise, we tested our spatial amplification al-
gorithm (this time on synthetic data instead of real
video data). Here, we generated a moving rectangle
with smooth edges (by applying a blurring function
that replaced the value of each pixel with the aver-

age of intensities of those around it). Our code calcu-
lated the quantity ∂x

∂t for each pixel by taking the ra-
tio of ∂I

∂t to ∂I
∂x . We replaced each point in the input

image, by a translated point I(x − λ∂x
∂t , y − λ

∂x
∂t , t)

where the lambda is our amplification factor. We
discovered that the output rectangle had extra ap-
parent displacement in the direction of motion at
each time-step. The dimensions of the rectangle
were conserved. Interestingly, the amplification was
not a linear function of the gain lambda, and we
noticed that blurring was extremely important for
acceptable results. The higher the blurring in the
input image, the larger the maximum possible am-
plified output; this tradeoff is due to an approxima-
tion in our theory. Ultimately, seeing an amplified
translation output in the simulation code gave us
confidence to move forward with the hardware im-
plementation.

Figure 1: Spatial Amplification Results on Software
Testing.

IV. Implementation

The two most important impacts of our approach
to this problem on implementation are the require-
ment to store multiple frames for processing, and the
fact that each pixel needs to individually compute
its amplified intensity. Processing the video in real
time put heavy constraints on timing and memory,
as discussed in the section on challenges. Keeping
this in mind, our hardware design targets computa-
tional efficiency. It is also flexible and modular, so
that the design can be easily implemented with bet-
ter hardware (for example, it can be easily modified
to work with different memory).

The hardware implementation consists of an in-
put stage, a spatial amplifier, a temporal amplifier,

and the output stage. Our overall system architec-
ture works by taking input from a camera, storing
video frames in memory, and processing the frames
for output. We store three frames in a circular frame
buffer - two that are used for processing, and one
which is being written into. Our frame buffer has
been implemented on Block RAM within the FPGA.
The processing modules access this buffer, and the
output frame is written to a ZBT RAM. The output
unit displays the frame in the ZBT RAM on a moni-
tor. The various modules in our implementation are
proposed in more detail below.

3



6.111 Final Project Report

Figure 2: Overview

4.1 Input and Storage

4.1.1 Preprocessing

This stage consists of the video decoder and the
YCrCb to RGB modules which produce the raw
NTSC data.

4.1.2 NTSC to bram

This module writes incoming image data to the in-
ternal BRAM on the FPGA. Each group of four pix-
els is assigned an address, the higher-order bits of
which signify the frame-number. The frame number
is incremented on the start of signalframe which sig-
nals when an entire frame had been written to mem-
ory (ie. when both even and odd fields from the ntsc
camera input have been written). The BRAM ad-
dress is 16 bits long, the first 2 bits store the frame
number. The next 8 store the y coordinate (a num-
ber between 0 and 255) and the final 6 store the
higher order bits of the x coordinate (bits 7 through
2). The lower order bits of x are ignored because the
data-words are 32 bits long, enough to store four pix-
els before asserting a write enable. While the data is
shifted to the output register (taking 4 cycles), the
address of x remains constant. Once three frames
have been written, the writing overwrites previous
frames and cycles through again (that is, although

framenum is a two bit value it is forced to zero if
it exceeds 2). The addressing scheme we use is such
that we store a cropped image of only 255 by 255 pix-
els. The cropping was achieved by truncating the
higher order bits of x and y in the address, origi-
nally intended for a 1028 x 764 image, and using the
higher order bits to control the we signal. This was
required to ensure that we could store at least three
frames.

4.2 Frame Buffer

4.2.1 Circular Frame Buffer

Here we store the last 2 image frames for processing.
This uses the block RAM on the FPGA.

The initial steps in working with the camera in-
terface involved storing multiple frames to the ZBT
memory. This required using the higher-order ad-
dress bit to label our address with the frame num-
ber, and disabling writes to memory upon pressing
a pausebutton. We were able to disable writing, and
then select between the two frames with a frame-
select button that toggled between two high-order
bits in the read address generated by vram_display.
We realized however, that storing input frames in
BRAM would be much more convenient for our pro-
cessing. Unlike ZBT, BRAM is a dual port memory
that returns data with single clock cycle read and
write latency.

4.3 Temporal Amplifier

This module is responsible for amplifying changes
in intensity over time. This module is instanti-
ated in the top-level module and is independent. It
contains two submodules - the dI_dt_amp module
and a get_point module. The dI_dt_amp mod-
ule requests the pixel intensity values at particu-
lar times and outputs control signals, which are fed
into get_point, the module which actually interfaces
with the frame buffer and obtains the required inten-
sity values.

4



6.111 Final Project Report

Figure 3: Temporal Amplification module

4.3.1 dI_dt_amp

This module actually computes the amplified inten-
sity value at a given point. It starts its calculation
on receiving a start signal from its parent module. It
also accepts the (x, y) pixel coordinates at which it
needs to calculate the amplified value. This mod-
ule requests the intensity at the given coordinate
in the current and previous frame. Each memory
access takes a single cycle and the value from the
get_point module is read into a register when the
got_value signal arrives from the get_point mod-
ule. Then, the current intensity is subtracted from
the old intensity, multiplied by the amplification fac-
tor mu, and added to the old intensity. Since pixel
intensity must be between 0 and 255, the final value
obtained is capped to be within this range. All of
this computation is done in combinational logic, so
the module just waits for some clock cycles and then
signals got_intensity.

4.4 Spatial Amplifier

This module is responsible for amplifying motion in
the video. As explained in the theory section, the
change in the position of a pixel from one frame to
the next is not readily available. Our entire algo-
rithm is local in nature, and each pixel individually
computes its amplified intensity. We do not estimate
the motion of an object in the video. Therefore, we
use the change in intensity of a given pixel through
time and the change in intensity of pixels across a
single frame and divide the two to obtain the change

in the position of a pixel from one frame to the next
(ie. ds

dt = dI/dt
dI/dx) .

Figure 4: Spatial Amplification module

This module implements an FSM which controls
memory accesses and coordinates the flow of data
between the modules. The states can be divided into
3 main parts - states 0-2 involve obtaining the inten-
sity derivatives with respect to x,y and t, ie. Ix, Iy
and It. State 3 involves dividing the time derivative
(It) by the spatial derivatives (Ix and Iy) to obtain
the position derivatives (dxdt and dy

dt ). Then we com-
pute the new coordinate (new_x,new_y), whose in-
tensity in the input frame, needs to be reproduced at
the current point (x,y) on the output frame. State
4 involves obtaining the intensity at this new point
and outputting it. The spatial amplifier contains
two get_point modules. One of them is used by the
Ix, Iy and It modules to obtain intensities at desired
coordinates. The other is used to obtain the inten-
sity value at the new coordinate calculated. Since
each state has only a single module accessing the
memory, there are no contention issues. The state

5



6.111 Final Project Report

decides which of the submodules is connected to the
get_point module.

Figure 5: State Transition Diagram

4.4.1 Ix, Iy and It

These three modules and dI_dt_amp are very sim-
ilar. Like the dI_dt_amp module, these three mod-
ules request intensity values at two different points.
The difference is that the final value returned is just
the difference of the two values obtained. In the Ix
module, the points between which the intensity dif-
ference is calculated is (x, y, t) and (x−1, y, t). Sim-
ilarly for Iy, the points are (x, y, t) and (x, y, t− 1).
For It, the points are (x, y, t) and (x, y, t − 1). Like
the dI_dt_amp module, the calculation is done in
combinational logic, and the module waits for 2 cy-
cles before signaling got_intensity.

4.4.2 ds_dt

This module acts as a wrapper module for the di-
vider, providing the control signals for the divider.

Since the divider is implemented using combina-
tional logic, this module holds the inputs of the
divider steady for two clock cycles, and then returns
the output of the divider, signaling a got_quotient.

4.4.2.1 divider
We needed integer division to calculate the rate

of change of position with respect to time, which
we use to compute the shift in x-coordinate and y-
coordinate for spatial amplification. We considered
several ways to implement this divider. We consid-
ered using a standard pipelined 8-bit 8-bit divider,
but opted to implement our own because we had
a specific purpose for the divider, and our require-
ments only required small outputs, since the shifts
are supposed to be small. So we did not need a gen-
eral purpose 8-bit 8-bit divider. Instead we focused
on optimizing it for the required purpose. Our first
implementation required a variable number of clock
cycles per division. On the q-th cycle we checked
whether 0 ≤ numerator - denominator ·q < denom-
inator. the output quotient q is asserted whenever
the condition is met. Since there is no control on
the worst case time consumed, we introduced a cap
on the output. But the timing constraints forced
this cap to be too small and we did not get desirable
results.

Next, we made a asynchronous divider with com-
binational logic which takes the numerator and de-
nominator as input, and outputs a quotient be-
tween 0 and 15. We implemented this in a binary
search procedure to get the right value of q. This
makes sure the propagation delay is only the delay
of log 16 = 4 multiplications. We only multiply vari-
ables with parameters, so they are mapped to lookup
tables by the compiler. The net propagation delay
was found to be 14ns, which is slightly less than one
cycle of the system clock. The details of its imple-
mentation is available in the code.

4.5 Control Unit

4.5.1 next_point

This module coordinates the processing with the in-
put and the display units. When the input unit sig-
nals that a frame is ready (frame ready), it provides
a start signal to the amplifier (start amp), along
with the first coordinate to be processed (0,0). Once

6



6.111 Final Project Report

the amplifier signals output_ready, it increments the
point to be processed and again signals start_amp.
It continues this until all the coordinates have been
processed. Then, it waits till the next frame_ready
signal, and repeats the process.

4.5.2 get_point

This module is used by both the temporal and spa-
tial amplifiers and acts as an interface between the
calculation modules and the frame buffer. It accepts
the (x, y, t) coordinates of the point at which the in-
tensity is desired. It uses an address_mapper to
obtain the buffer address of the desired coordinate.
Then, it outputs this address to the frame buffer.
Since the frame buffer is a BRAM on the FPGA,
the output is available after a single clock cycle.
The output from the buffer is again fed into the
address mapper, which parses the output and and
returns the desired intensity value. The get_point
module then outputs this intensity value. This mod-
ule takes 1 clock cycle to output the desired value,
since 1 clock cycle is required for the memory access.

4.5.2.1 address_mapper
This module abstracts away the memory from

the rest of the modules. It maps (x,y,t) coordinates
to addresses which can be used to obtain the inten-
sity at the coordinate. It also parses the output of
the buffer and extracts the desired intensity value.
This makes our design flexible and scalable, because
changing the size or type of memory or changing the
addressing scheme only involves changing the map-
ping in this module. Other modules would be unaf-
fected by changing the memory structure.

4.6 Output

The general goal of the camera/display modules is
to store input frames in memory for processing,
and to store the resulting output in the zbt RAM
for display. We stored three frames in our input
frame buffer, two frames for performing our com-
putations, and one frame for writing the incoming
image-stream. (This scheme avoids the memory con-
tention issue which would arise with a two frame
buffer). Our output frame buffers store one frame
each. The overall dataflow of our image storage is
shown in the figure below. We utilize one BRAM

and two ZBT ram banks, for processed and unpro-
cessed outputs.

Figure 6: Display Modules

4.6.1 Display Buffer

This is a ZBT RAM bank that serves as a single
frame buffer for constructing the output image on
the VGA display.

4.6.2 display_zbt

This module writes our processed image data to the
first ZBT rambank. ZBT requires a 19 bit address,
so we padded the higher order bits with 5 zeros fol-
lowed by the 8 bit y address and bits 7:2 of the x
address. As new data from the amplifier became
available (on the output_ready signal) we shifted
each 8 bit pixel into into our output data register.
When 4 pixels have been accumulated a write enable
is asserted, and the output data register is padded
with 4 leading zeros (to create a 36 bit data word).

7



6.111 Final Project Report

4.6.3 ntsc_to_zbt

We wanted to have a live, unprocessed display for
our user-interface. This requires writing the in-
coming ntsc signal from the camera to a zbt ram
bank. The data addressing scheme here is identical
to ntsc_to_bram. This makes it straightforward to
switch between the two displays.

4.6.4 vram_display

This module reads data from our ZBT ram banks,
and displays an image output on the VGA display.
The module generates a 19 bit read address that ac-
cesses ZBT. To avoid displaying multiple copies of
the stored image, we checked to see if the high-order
bits of y and x were equal to appropriate constants.

4.7 Timing

One of the central points that we had to keep in
mind throughout the processing implementation was
cycles per pixel. Since we are doing real time video
processing, we needed to make sure the following
constraints are met -

cycles per pixel * number of pixels * system clock
period * frame rate < 1

Because of memory limitations we were forced to
reduce number of pixels from the maximum to res-
olution of the camera to a 256× 256 field. We had
to keep in mind that the system clock was 65 mhz,
about double of the camera clock frequency, which is
27mhz. We calculated that we could afford 28 cycles
per pixel on average. This was not any issue in the
temporal amplification processing, but we found this
a limitation in case of spatial processing. Timing is
one of the reasons we opted to use the bram rather
than the zbt for processing buffer, since bram has a
lower latency than the zbt.

The bottlenecks in our processing stage were:

1. Ram latency

2. Divider Propagation delay

3. Gain multiplication

Our strategy for utilizing the maximum ram
throughput was to use the computation for Ix, Iy, It

in parallel while queueing on the read_enable sig-
nal at the get_point module. Parts of the code was
pipelined and we successively saved a few cycles from
the initial implementation.

4.8 User Interface

Our system has a very simple and minimalistic user
interface. It consists of the NTSC video camera,
a set of buttons and switches on the Labkit, a 16
character LED display, and a monitor. The LED
display shows the mode that the system is in - ei-
ther temporal or spatial. It also displays the current
value of the amplification factor. The mode can be
changed by flipping a switch, and the amplification
factor can be changed using two buttons (for increas-
ing and decreasing the value). There is also a reset
button, which resets the system. The monitor dis-
plays both the original, unprocessed video, and the
amplified video next to each other. This allows the
user to compare the videos and distinctly observe
the amplification.

Figure 7: User Interface

V. Challenges

The main challenge we faced in our project was lim-
ited memory. We had only 3MBits of memory to
store in the bram, which forced us to crop the frames
to a 256 × 256 region. Although the processing
would have worked very easily with color video, there
was not enough room to store 3x amount of data for
RGB pixels.

The second problem was the noise from camera
input that always got in the way of computing the
delta, because actual difference in intensity was of-
ten indistinguishable from fluctuations due to noise.
This was particularly a problem in the division step
of the spatial amplification, because of Catastrophic
Precision Loss during the subtraction. We used a
threshold value to prevent this, but it meant that

8



6.111 Final Project Report

the processing was slightly insensitive to small gra-
dients of intensity.

The noise problem could have been mitigated to
a good extent if we had enough capacity to store
more than 3 frames, then we would have taken the
delta between pixels separated by more than one
time step and more than one coordinate position to
increase the precision.

Thirdly, we found some systematic imperfections
in the output video which lined up vertically in in-
frequent but irregular fashion. We tested all parts
of our implementation individually and made sure
that correct data is written to the output_zbt. The
problem seems to be occur reading from the zbt. We
suspect that this is caused by the clock skew, since
the zbt is located further away from the clock gen-
erator.

VI. Related Work

We were motivated to take up this problem for our
project by the work of Freeman et. al. from MIT
CSAIL (Eulerian Video Magnification for Revealing
Subtle Changes in the World)

VII. Summary

We have implemented a real-time hardware digital
processing system that amplifies temporal and spa-
tial changes in videos. Our temporal amplifier shows
promising results, and has a very clear amplified out-
put. Our spatial amplifier shows translational ampli-
fication but requires further work on noise reduction
and thresholding.

VIII. Future work

We were primarily limited by the image quality of
our camera and memory constraints. An interest-
ing future direction given more memory would be
to allow frequency selective amplification. Here for
example, we look only at a frame one time step in
the past for our time derivative calculations. If we
looked further back instead we would be sensitive to
lower frequency changes. By making this lookback-
time a parameter, it would thus be possible to look at
and amplify frequency selective changes. Other fu-
ture directions include enabling color display, which
is again only limited by memory; the processing de-
tails remain exactly the same.

9



6.111 Final Project Report

100 200 300

200

400
100 200 300

200

400
100 200 300

200

400
100 200 300

200

400
100 200 300

200

400

100 200 300

200

400
100 200 300

200

400
100 200 300

200

400
100 200 300

200

400
100 200 300

200

400

100 200 300

200

400
100 200 300

200

400
100 200 300

200

400
100 200 300

200

400
100 200 300

200

400

100 200 300

200

400
100 200 300

200

400
100 200 300

200

400
100 200 300

200

400
100 200 300

200

400

100 200 300

200

400
100 200 300

200

400
100 200 300

200

400
100 200 300

200

400
100 200 300

200

400

100 200 300

200

400
100 200 300

200

400
100 200 300

200

400
100 200 300

200

400
100 200 300

200

400

100 200 300

200

400
100 200 300

200

400
100 200 300

200

400
100 200 300

200

400
100 200 300

200

400

100 200 300

200

400
100 200 300

200

400

100 200 300

200

400
100 200 300

200

400
100 200 300

200

400
100 200 300

200

400
100 200 300

200

400

100 200 300

200

400
100 200 300

200

400
100 200 300

200

400
100 200 300

200

400
100 200 300

200

400

100 200 300

200

400
100 200 300

200

400
100 200 300

200

400
100 200 300

200

400
100 200 300

200

400

100 200 300

200

400
100 200 300

200

400
100 200 300

200

400
100 200 300

200

400
100 200 300

200

400

100 200 300

200

400
100 200 300

200

400
100 200 300

200

400
100 200 300

200

400
100 200 300

200

400

100 200 300

200

400
100 200 300

200

400
100 200 300

200

400
100 200 300

200

400
100 200 300

200

400

100 200 300

200

400
100 200 300

200

400
100 200 300

200

400
100 200 300

200

400
100 200 300

200

400

100 200 300

200

400
100 200 300

200

400
100 200 300

200

400

Figure 8: In the top two figures the results from our matlab experiment are shown on a greyscale video stream. The
left set of frames is the original video with small change in brightness. The signal is temporarily magnified
in the corresponding frames of the right panel. The plots in the bottom depict the variation in intensity of
a sample pixel.

10



6.111 Final Project Report

11



6.111 Final Project Report

12


	Introduction
	Theory
	Prototyping
	Implementation
	Input and Storage
	Preprocessing
	NTSC to bram

	Frame Buffer
	Circular Frame Buffer

	Temporal Amplifier
	dI_dt_amp

	Spatial Amplifier
	Ix, Iy and It
	ds_dt

	Control Unit
	next_point
	get_point

	Output
	Display Buffer
	display_zbt
	ntsc_to_zbt
	vram_display

	Timing
	User Interface

	Challenges
	Related Work
	Summary
	Future work

