Cambot

Kelly Snyder and Becca Greene
Autonomous machines need localization and mapping algorithms (SLAM)

Improving SLAM algorithms is an area of active research

The high-speed data and signal processing of FPGAs makes them well suited for this task.
A Hexapod!
Base Goals

- Hexapod moves and doesn’t crash into things
- Robot can be seen and tracked with camera
- Robot is directly user controlled
- Movement commands are wirelessly transmitted to robot
Implementation - Overview

- **Lab kit**
 - Tracks Robot with Camera
 - Translates User Input to Movement Commands

- **Nexys3**
 - Controls Movement

Data flow:
- Camera
- User Input
- Xbee
- Hexapod
Peripherals

- VGA screen
- NTSC Camera
- Distance Sensors
- Twelve Servo Motors
Labkit FSM

- Modules for NTSC to VGA, image recognition, mapping, user control
- Turns user input and mapping into directions for the hexapod
Hexapod FSM

- Modules for distance sensors, motor control, and xbee communication
- Turns directions from labkit into motion
- Override directions if about to run into object
Xbee

- Easy to use RF Module
- Configure on Computer
- Treat RF communication as UART
Secondary Goals

- Allow users to select a point on the screen
- Map best path to that point
- Additional Requirements:
 - obstacle recognition
 - heuristic algorithms
 - better motor control
Stretch Goals

- Have robot follow a second object
- Additional Requirements
 - More object recognition
 - Improved mapping algorithm
Timeline

Nov 15 - Implement Xbee interface between fpgas
 - Start work with distance sensors
 - Camera streams in color, start image recognition

Nov 22 - Build Hexapod Kit
 - Implement motor controls
 - Finish distance sensors
 - Image recognition working, start move to point

Nov 29 - Implement mapping algorithms
 - Implement object tracking

Dec 6 - Debug