
6.111 PROJECT PROPOSAL

CHROMA KEY COMPOSITING WITH FPGA
Daniel Moon and Thipok Ben Rak-amnouykit 6.111 Fall 2014

1 Overview

 Chroma Key Compositing is a special effects technique commonplace in fields such as

news casting, video production, and movies. Chroma Key Compositing identifies a color,

referred to as the Chroma key, in a video feed, then replaces the color and layers an image or

another video feed in lieu of the color. In most modern-day Chroma Key Compositing, the video

is taken and post-processed with editing software, such as Adobe After Effects. In this project,

we will replicate the technique on an FPGA, which allows us to process the video feed and

stream the output to a VGA monitor in real time. Our project therefore offers a solution to

removing an intermediary step between video recording and final production.

 To build a Chroma Key Compositing system, we will use one NTSC camera to capture the

video feed of a Chroma key background with obstructions in the foreground. The second NTSC

camera will capture another video feed that will replace the Chroma key. We will store the

video feeds in a DDR ram use an FPGA module to choose to control video overlaying. The

module replace a pixel in the first video feed with a corresponding pixel from the second feed

when the Chroma key of this pixel is within the selected Chroma key range. The final product

will have two video feeds composited correctly and streamed to a VGA monitor in real time.

 For the minimal design, we will start by overlaying the Chroma key of a video feed with

a static image. Once we have accomplished this task, we would like to composite two video

feeds. This step requires correct synchronization of the video feeds, such that the VGA monitor

output a new frame with no delay from either camera, despite their asynchronous refreshing

times. Finally, if we successfully composite two video feeds, we would like to implement a

module for morphological processing. Morphological processing improves Chroma Key

Compositing’s robustness by correcting any error of having pixels in the foreground’s

obstructions with similar color as the Chroma Key.

2

1 Design Decisions

This section describes the design of our Chroma Key Compositing system. The project is

partitioned into three sections: the video system module, the memory module, and the selector

module. Figure 1 displays a detailed block diagram of the design proposal.

i. Video System

Our video system will consist primarily of two NTSC cameras. We chose NTSC cameras

because of their relatively low resolution, which lowers the size of storage memory needed.

NTSC camera also has existing data-processing modules that reduce the complexity of data-

format transformation between the camera and the memory module. Specifically, the

memory module will receive input in YCbCr color. Also note that the video feeds from both

cameras will be on similar scale, allowing the selector module to perform 1-to-1 pixel

replacements without further scaling.

ii. Memory

Our memory module will consist of a memory arbiter and an external DDR RAM. An arbiter

takes in video feeds from both cameras, selects one video feed, and stores the data at a

specific location in the memory bus, then switches to the other feed and stores its data at

another specific location. An external DDR RAM is necessary because the built-in memory

capacity of the FPGA is severely limited.

iii. Selector

Our selector module will initially be a multiplexer that compare pixels from the first video feed

with the given Chroma key range and replace selected pixels with corresponding pixels from the

second video feed. In the more complex level, morphological image processing will be

implemented into this module to correct overlaid pixels in the foreground. After completing

pixel replacements, the selector module also converts pixels from YCbCr format to RGB format

and output this signal to the VGA monitor.

3

Figure 1: The Overall Block Diagram for the chroma key compositing. Above is a block diagram of the

various modules that comprise the chroma key compositing. Chroma key compositing is composed of

three blocks, the Video System (two NTSC cameras, the chroma feed and a video feed), the Memory (which

consists of two FIFOs, a Memory Arbiter and a DDR) and the Selector (which consists of a Selector Mux, a

YCbCr2RGB, a FIFO and a VGA display. The arrows represent the inputs and outputs of the modules.

Additionally, a specified clock will connect to the modules within the FPGA while the NTSC cameras and VGA

display will each have their own internal clock.

the blocks in the system; however for simplicity, the clock arrow connections have not been displayed.

3 Implementation

Fig. 1 is our block diagram for our Chroma Key Compositing system.

We decided to approach our design project in three modules. Our idea is that we would

segment the system into sensors, memory, and the algorithm that does the proper chroma

keying.

i. Video System – by Daniel Moon

Our video system first consists of two NTSC cameras that will be in progressive display

which takes a view and outputs color in the form of YCbCr and location of the bits. The NTSC

camera has two input settings for the video feed being wired into the memory module. It can

4

either send information interlaced or progressive. We will be using progressive mode in our

video as it sends bits in from the top left reads left to right, increments to the next row all the

way to the bottom right. This makes memory storage and memory retrieval very easy, since we

will only have to store start and end address value for the pixel information. These cameras also

have an auto-gain feature that combats any issues we may have with the video having an

extraneous noise due to underexposure.

 Also, YCbCr is our color display design choice since it has a luminance component (Y), a

color difference blue (Cb) and a color difference red (Cr). This means that if we have the

correct Cb and Cr to output the chroma key we are compositing on, we can use Y to take care of

a range of luminance of that color which may occur due to uneven lighting and shadows casted

by obstructions in the foreground.

 Secondly, we also need to address the chroma key that will be used in our experiment.

We will be using a green screen as a chroma key and will use a YCbCr value close to the green

screen’s color for our selector module. Preferably, we will place the chroma key in a bright

location in lab which would provide a bright and saturated image of the chroma key. We will

zoom in on the chroma key such that the entire chroma key video feed is encompassed by the

green screen. This will make our compositing a one to one scaling and will get rid of any issues

with rescaling another video feed onto the chroma key.

ii. Memory – by Ben Rak-amnouykit

Memory becomes a large issue when we are in the final steps of storing the feeds of two

cameras. Our FPGA will not be able to write, read and store megabytes of memory which will

require us to use a DDR ram and a memory arbiter to handle any data coming in from the NTSC

camera. Our DDR will be around 1GB in size and offer high transfer rates on the order of 1-2

GB/s. But we need to be aware of the bandwidth limitations of our DDR with regards to total

information we receive from the cameras. From a top level perspective, we see that our

bandwidth has two constraints:

 { }

 and

Where is bandwidth, is frame rate, { } is number of frames accessed, is pixels per

frame, is bits per pixel, and is maximum bandwidth DDR. We will further

revisit this issue in the Testing section of our proposal. So we will make design decisions to

5

sacrifice certain information such as a reduction of frame rate (i.e. from 60 fps to 30fps) in

order to fit our constraints.

 The Memory arbiter serves an important role for correctly placing the output of the

chroma key camera feed to the one set of address lines and the second camera feed to another

disjoint set of address lines. We plan to store one frame of a video feed into memory after the

other and then wait the correct frame rate to store the next two frames from the two video

feeds.

 We also cannot forget to include a FIFO buffer for each of the cameras to order the data

being fed into the arbiter. There is also an issue with synchronizing the buffer such that it

readies the data at the correct frame rate to be sent to the arbiter.

iii. Selector – Daniel Moon and Ben Rak-amnouykit

The selector module checks the chroma key video feed with the specified color and

luminance. If the pixel being checked is in the color and luminence range, the selector will

increment the address value correctly such that it accesses the correct pixel in the second video

feed and outputs that pixel instead of the pixel from the chroma key video feed. This is a

standard multiplexer and is not the end-all goal for our design project.

Mophological Image Processing is our final goal for the selector module. It involves

manipulating an image by expressing it in terms of dilation, erosion and boundary. This allows

us to have a more powerful Chroma Key Compositing algorithm which not only checks for pixel

color but also guarantees boundary detection such that any material, such as clothing, which

may have the chroma key color not be composited by the second video feed.

Finally, we will send the correct pixels through a YCbCr to RGB converter. This

conversion is simply a linear transformation which can be done with matrix mathematics. RGB

is the color scheme used for VGA display. We also need other information such as hsync and

vsync which organizes the pixels in a coordinate plane to be displayed on the VGA. ADV7125

would be the converter module that would take care of this YCbCr issue. Lastly, we will also

need another FIFO buffer to correctly feed the frame information in order for the VGA to

express it accurately in progressive scan. Figure 3 articulates the display that would be shown

on the VGA monitor.

6

Fig. 3 Display of the VGA monitor. Hcount counts pixels in a

scan line, vcount counts scan lines in a frame, and

vsync/hsync interval stores the coordinates of the pixels.

7

4 Timeline

WEEK 1 10/26-10/31

Proposal Conference with Jose

Draft Proposal Meeting with Michael

Project Proposal Due

WEEK 2 11/2-11/7

Block Diagram Conference

Obtain Cameras, DDR, and Chroma Key

Begin Video System Module with Static Image

Begin Memory Module

Project Design Presentation

WEEK 3 11/9-11/14

Continue Video System Module with Static Image

Complete Memory Module

Begin Selector Module

Submit Revised Project Proposal

Project Checkoff Checklist Meeting

WEEK 4 11/16-11/21

Complete Video System Module with Static Image

Complete Selector Module

Begin Video System Module with Video Feed

Integrate Current Completed Modules

WEEK 5 11/23-11/28

Project Status Update with Mentor

Complete Video System Module with Video Feed (Video Feed Overlay)

Integrate New Current Modules

Debug Chroma Key Compositing System before leaving for Thanksgiving

Ponder about Morphological Image Processing over Thanksgiving

WEEK 6 11/30-12/5

Implement and Complete Morphological Processing

Debug Final Project

Test Final Project

WEEK 7 12/7-12/10

Final Project Checkoff

Project Demos and Videotaping

Final Project Report Submission

8

5 Testing

First of all, each module of the project will be tested and debugged separately. For the video

system module, we will output YCbCr bits from the video feed and the static image to a logic

analyzer. The memory module will be tested for correct DDR memory storage and retrieval of

video data using a logic analyzer as well. To test the selector module, we inputs sample frames

and a static image, and check whether the Chroma key pixels in the frames are replaced with

correct pixels from the image. Then we test whether the processed frames are converting

correctly to the RBG format by displaying the result on a monitor.

Once our initial modules are complete, we will integrate the system and test it with a real video

feed. In the first step, the video feed will consist only of the background Chroma key pixel, and

must be replaced completely by the given image. Afterward we move back the memory module

and test if it can still store and retrieve two video feeds correctly using the logic analyzer. We

will then test the Chroma Key Composition by seeing if overlays the video of the second feed on

top of the chroma key in the first. If not, we will debug the system. It is here that we will see if

there needs to be sacrifices in bandwidth to have our system working in real time. From a top

level perspective, we mentioned from previously from our Implementation section that there

two bandwidth constraints. We will have to make some design choices in order to satisfy these

constraints in order to be able to output our Chroma Key Composite in real time. Another

consideration at this point will be us having to check that we are doing all the computation fast

enough so that we could output a video on the VGA at our designed frame rate. Finally, we will

test if morphological processing works by wearing chroma key samples on ourselves and seeing

if it does accurate border detection to see that these samples are not part of the chroma key

screen. If this passes, we expect to do minor tweaking of the bandwidth to make the entire

system work robustly in real time.

6 Conclusion

Our motivation for our final project is to replicate Chroma Key Compositing on our FPGA which

eliminates an intermediary step between recording and video production to offer real time

composited video stream. We decided to split the final project into a video system which

captures and sends the chroma key and non-chroma key video feed, a memory system that

stores and retrieves the feeds, and a selector that successfully composites the two feeds to a

VGA output. Our final product should be a showcase where we have one camera facing in a

direction in lab, another positioned in front of a chroma key background where students and

staff could test and a VGA wired to the FPGA where others could see this special effects

technique being executed.

9

7 Resources

APPENDIX A RESOURCES

Item Cost Status

NTSC Camera (2) Freely Provided ---

DDR RAM Freely Provided ---

Chroma Key $18.00 Purchased

