Checkoff Checklist
6.111 — Fall 2015 — Project Proposal

Juan Huertas and Andrés Salgado-Bierman
November 20, 2015

1 System Checklist

This document will first cover how different levels of development will look like for the system as a whole, and then delve into what technical components are needed in each module to achieve those goals. The core of the project is implementing our own facial recognition system in hardware using efficient feature representations as well as some hardware adjusted software approaches to object recognition via linear classifiers.

Commitment: Accurate recognition of face (>50% accuracy), signaled by LED
Goal: Accurate recognition of face (>75% accuracy), with LBP displayed on screen
Stretch Goal: Accurate recognition of face (>80% accuracy), candidate windows highlighted on screen.

2 Module Checklists

2.1 Image Preprocessing (Juan)

Commitment: Crop to 130 px wide 152px tall, Y to LBP conversion (shrinks by two pixels in each direction due to edge effects), Store LBP to ZBT1
Goal: Store full image in ZBT
Stretch Goal: Store full image in ZBT

2.2 Feature Extraction (Andrés)

Commitment: 1 histogram 256 features per image
Goal: 16 histograms 4096 features per image
Stretch Goal: 240 histograms 61440 features per image

2.3 Classification (Andrés)

Commitment: takes dot product using divisions
Goal: takes dot product as num denum pair, 16 bit rational number, optimizing divisions
Stretch Goal: 32 bit rational number precision on num denum pair
2.4 Adaboost (Juan)

Commitment: 1 subproblem optimization (Bayesian inference)

Goal: 17 subproblems (>75% accuracy)

Stretch Goal: 240 subproblems (>80% accuracy)

2.5 Controller FSM (Andrés and Juan)

Commitment: controls ZBT0 ZBT1 interface, LED blinks on detection

Goal: LBP values displayed on screen

Stretch Goal: LBP values displayed and window highlighting each face

2.6 Candidate Window Generation (Andrés and Juan)

Stretch Goal: Window Generation

Super Stretch Goal: Rosenfeld Algorithm

Mr. Fantastic Goal: size invariance