
Fpglappy Bird

Wei Low, Nicholas McCoy, and Julian Mendoza



Problem
● popular, difficult and frustrating game
● software implementation for mobile devices
● “gone forever”



● Implement on NEXYS 4
● OV7670 camera points at player and tracks 

“beak” on their face
● Game images built from predefined sprites 
● Sound effects from SD card
● Player jumps => bird jumps

Overview



Design



Implementation: Vision Processing Block

VIsion Processing Block
Video In Player coordinates

BRAM

Video Frame

Object
Identification Kalman Filter

Preprocessing



Implementation: Vision Processing Block
Vision Processing Block

Video In Player coordinates

BRAM

Video Frame

Object
Identification Kalman Filter

Preprocessing



Preprocessor

● Gray-scale Conversion
● Thresholding
● Noise Filtering



Preprocessor

● Gray-scale Conversion
● Thresholding
● Noise Filtering



Preprocessor

● Gray-scale Conversion
● Thresholding
● Noise Filtering



Preprocessor

● Gray-scale Conversion
● Thresholding
● Noise Filtering



Implementation: Vision Processing Block
Vision Processing Block

Video In Player coordinates

BRAM

Video Frame

Object
Identification Kalman Filter

Preprocessing



Implementation: Vision Processing Block
Vision Processing Block

Video In Player coordinates

BRAM

Video Frame

Object
Identification Kalman Filter

Preprocessing



Gameplay Logic Block

Implementation: Gameplay Logic Block

Button input

PhysicsPlayer coordinates

Audio selection

Face pixels

SD 
Card

High Scores

Obstacle location

BRAM

Game State

sa
ve

 te
mp h

igh
sc

o



Implementation: Game States

start

play

losepause

high 
score

ENTER 
button

“CONTINUE”

“END”

after 3 seconds

ENTER 
button

ENTER 
button

ENTER 
button



Sprite Pipeline

Implementation: Video Block

● Takes input of sprite 
locations from game 
logic block
○ Player sprite, 

background, up to 3 
obstacles

● Sprite pipeline like in 
Lab 2

● Textures from SD card
● Takes input of a picture 

of the player’s face from 
the vision processing 
block and uses it a 
sprite for the player

Sprite Image 
Memory (BRAM)

VGA 
Controller VGA Out

SD CardLoad at startup

Object Locations

Video Memory (for player face)



● Takes enable signals from the Game Logic block for each audio track
○ Jumping sound effect
○ Crashing sound effect
○ Background music

● Sounds files loaded from SD card as they are played (.wav format)
● Uses mono audio DAC onboard the NEXYS 4

DAC Audio Out

SD Card (.
wav files)

Track enable bits

Load tracks as they play

Audio
Controller

“Jump” FSM

“Crash” FSM

Music FSM

Implementation: Audio Block



Schedule Task 11/1 11/8 11/15 11/22 11/29 12/06

Interface with FPGA All

Object Tracking Module J J J

Audio/Video Module N N

Game Logic Module W W

Preliminary Testing All All J

Integration: Game Logic, Audio Video N, W

Integration: Object Tracking All All

Testing All

Buffer Time/Stretch Goals All

Demo/Final Presentation All

Schedule



Complexities
● Memory management during image processing
● Noise management
● Distributing access to SD card



Stretch Goals
● Multiple FPGAs running the game and comparing high scores
● Sprite rotates as it jumps
● Multiplayer version


