A 18E -

Logic Synthesis

* Primitive logic gates, universal gates
* Truth tables and sum-of-products

* Logic simplification

* Karnaugh Maps, Quine-McCluskey

* General implementation techniques:
muxes and look-up tables (LUTs)

Reminder: Lab #1 due this Thursday!

6.111 Fall 2016 Lecture 2

Late Policies

* Lab 1 check-offs - sign-up on checkoff queue in lab - FIFO during
staffed lab hours.

* Please don't assume that you can wait until the last minute!

* No check-offs on Friday or Saturday

+ Lab grade = Checkoff + Verilog grade (equal-weighting)

+ On-time check-off:
+ 20%/day late penalty (no penalty for Friday or Saturday)
* Max penalty 80% reduction.

+ All labs must be checked off before you can start your final
project. We've learned that if you're struggling with the labs, the
final project won't go very well.

* Lpset - must be submitted on time.

6.111 Fall 2016 Lecture 2

Schematics & Wiring

* IC power supply connections generally not
drawn. All integrated circuits need power!

» Use standard color coded wires to avoid
confusion.

—red: positive
—black: ground or common reference point
—Other colors: signals

* Circuit flow, signal flow left to right

* Higher voltage on top, ground negative voltage
on bottom

* Neat wiring helps in debugging!

6.111 Fall 2016

Wire Gauge

* Wire gauge: diameter is inversely
proportional to the wire gauge number.
Diameter increases as the wire gauge
decreases. 2, 1, 0, 00, 000(3/0) up to 7/0.

* Resistance
—22 gauge .0254 in 16 ohm/1000 feet
—12 gauge .08 in 1.5 0hm/1000 feet
—High voltage AC used fo reduce loss

* 1 cm cube of copper has a resistance of 1.68
micro ohm (resistance of copper wire scales
linearly : length/area)

6.111 Fall 2016

CMOS Forever?

Mastering Moore’s Law —
" : : 13 billion 10 billion
Intel S progress |n_pack|ng more Intel Core 2 Duo
transistors on mainstream 410 million 1 billion
microprocessor chips —
oot Pentium 4° Corei5 N
wantmc scale 125 million 10 billion 10 million
Pentium 1 million
3.1 million
100,000
10,000
T_ 1,000
4004 100
2,300 transistors
10
1
1971 ‘80 90 2000 ‘10
*Upagraded versions of prior models
Source: Intel THE WALL STREET JOURNAL.
6.111 Fall 2016 Lecture 2

Diminishing Returns *

Creating smaller circuitry has placed more transistors on chips but
triggered higher costs.

80 nanometers

As
has 60 Size': 65 nanometers
gotten Design cost: $16.4 million
smaller...
2007
40 ®
2009
L]
2012
20 5
2014 @
Size": 14 nanometers
Design cost: $131.6 million
0 £30 million 60 90 120 150
* Intel ..the average cost of designing a chip has increased
“Billionths of a meter
6.111 Fall 2016 Lecture 2

Timing Specifications

Propagation delay (tpp): An upper bound on the delay
from valid inputs to valid
outputs (aka “tpp max)

,,

minimize
propagation
delay

6.111 Fall 2016 Lecture 2

f f Design goal:

Contamination Delay

an optional, additional timing spec

Contamination delay(t): A Jower bound on the dela
from invalid inputs to invalid
outputs (aka “tpp min”)

Do we really need

Usually not... it’ Il be
important when we
design circuits with
registers (coming
soonl)

If tcp is not
specified, safe to
assume it’ s 0.

6.111 Fall 2016 Lecture 2

The Combinational Contract

A B i
tpp propagation delay
A—Do- B ? é 1., contamination delay

o€

Note:
1. No Promises during YW
2. Default (conservative) spec: t.5 = 0

6.111 Fall 2016 Lecture 2

D = —
N Mustbe < tep

Functional Specifications

Al B|C|Y
0/0|0]|O
Output 1" if at 0 0 1 0

input A least 2 out of 3 of
: Oherwrse, aurput " 0} 1]0/f0
input B ¢ output Y 0 1 1 1
Lum 1000
seeing vad nputs 1]o0]1]1
171011
171111
3 binary inputs

50 2% = 8 rows in our truth table

An concise, unambiguous technique for giving the functional
specification of a combinational device is to use a fruth table to
specify the output value for each possible combination of input values
(N binary inputs -> 2N possible combinations of input values).

6.111 Fall 2016 Lecture 2 10

Here's a Design Approach

1. Write out our functional spec as a truth
table

2. Write down a Boolean expression with
terms covering each 'l' in the output:

/Y;s.C+A-§-C+A.B.E+A.B.C

=R ==, 000 0>
_ =R OO~ —~IOO|Ww

= O = O|=m O~ O|lO
== = O = 0|00

This approach creates equations of a
particular form called

SUM-OF-PRODUCTS

-it's systematic!
-it works!

-it's easy!
9/ _are we done yet??2?
=

6.111 Fall 2016 Lecture 2

Sum (+): ORs
Products (-): ANDs

S-0O-P Building Blocks

A|lZ
INVERTER: A—[_:;;;:o_z:; 0l1
N\ gubble indicates 1]0

inversion
A 8|z
0 0|0

AND: A .‘.I =A-B
Bj J ¢t 010
1 0|0
1 1|1
ABlz
T 0 0|0

. A 5T

OR: | y»—z=A+B o 11
‘ 1 01
1 1|1

6.111 Fall 2016 Lecture 2 12

Straightforward Synthesis
Y=A-B-C+A-B-C+A-B-C+A-B-C

ANDs and ORs with > 2 inputs

We can use

SUM-OF-PRODUCTS A—— o— .
to implement any logic C |/ D—Y ‘ . _AB.C

function. A B z =

EE ¢ Chain: Propagation delay increases

OHK n;ed g ga'f[e\l;ypes: A — A linearly with number of inputs

INVERTER, AND, OR B —

c— >— / B _7=A-B-C-D
: , A C

Propagation delay: B D D Which one should T use?
+ 3 levels of logic ¢ 5
* No more than 3 gate delays assuming gates with an arbitrary J

number of inputs. But, in general, we'll only be able to use gates A

with a bounded number of inputs (bound is ~4 for most logic B _AB.C.D

families). C Z=AB

D > Tree: Propagation delay increases
logarithmically with number of inputs
6.111 Fall 2016 Lecture 2 13 6.111 Fall 2016 Lecture 2 14
SOP w/ 2-input gates More Building Blocks
Previous example restricted to 2-input gates:
NAND (not AND) NOR (not OR)

Y=A-B-C+A-B-C+A-B-C+A-B-C

N e »» N = » N @ > N @ P

Using the timing specs given to the
left, what are tpy and t for this

|INV AND2 OR2 combinational circuit?

tey| 8ps 15ps 18ps . .
1 Hint: to find overall t,, we need to
c| s 3ps 3ps find max tpy considering all path
> PD g all paths
from inputs to outputs.

6.111 Fall 2016 Lecture 2

| p»—z=A+B

CMOS gates are naturally inverting so we want to use NANDs and NORs
in CMOS designs...

XOR is very useful when implementing
parity and arithmetic logic. Also used
as a "programmable inverter”: if A=0,
Z=B; if A=1,Z=~B

XOR (exclusive OR)

o,
") —z-neB

Wide fan-in XORs can be created with
chains or trees of 2-input XORs.

6.111 Fall 2016 Lecture 2 16

NAND - NOR Internals

Dual-In-Line Package

Vec B4 A4 Y4 B3I A3 Y3

|lr1 13 12 11 10 9 8

o) (] -

A—| Y
T:' —
ﬁD > AL O
|1 2 3 4 s 6 |7
Al B1 Y1 A2 B2 Y2 GND
NAND HOR

This device contains four independent gates each
of which performs the logic NAND function.

6.111 Fall 2016 Lecture 2 17

Universal Building Blocks

NANDs and NORs are universal:

> = = >

D= D= 5>
= D= D>

Any logic function can be implemented using only NANDs
(or, equivalently, NORs). Note that chaining/treeing
technique doesn't work directly for creating wide fan-in
NAND or NOR gates. But wide fan-in gates can be
created with trees involving both NANDs, NORs and
inverters.

6.111 Fall 2016 Lecture 2

SOP with NAND/NOR

When designing with NANDs and NORs one often makes use of

De Mor‘gan S 'GWS: De Morgan-ized NAND symbol

T~ Y = A f A—3 4)

NAND form: A-B=A+B . | p2= ') "z

NOR form: A+B=A-B . | »2=""71)=
: BN e Morgan-ized NOR symboi

So the following "SOP" circuits are all equivalent (note the use
of De Morgan-ized symbols to make the inversions less

confusi ng): De Morgan-ized

Inverter

z z : z

AND/OR form NAND/NAND form

This will be handy in Lab 1 since
you'll be able to use just 7400's
to implement your circuit!

NOR/NOR form

All these “extra” inverters may seem less
than ideal but often the buffering they
provide will reduce the capacitive load on
the inputs and increase the output drive.

6.111 Fall 2016 Lecture 2 19

Logic Simplification

+ Can we implement the same function with fewer gates? Before
trying we'll add a few more fricks in our bag.

+ BOOLEAN ALGEBRA:

OR rules: a+l=1 a+0=a a+a=a

AND rules: al=a a-0=0 a-a=a

Commutative: a+b=b+a a-b=b-a

Associative: (a+b)+c=a+(b+c) (a-b)-c=a-(b-c)
Distributive: a-(b+c)=a-b+a-c a+b-c=(a+h)-(a+c)
Complements: a+a=1 a-a=0

Absorption: a+a-b=a a+a-b=a+b a-(a+b)=a a-(a+b)=a-b

De Morgan's Law: 3-b=a+b a+b=a-b
Reduction: a-b+a-b=b (a+bh)-(a+b)=b

|

Key to simplification: equations that match the pattern of the LHS
(where "b" might be any expression) tell us that when "b" is true, the
value of "a" doesn't matter. So “"a" can be eliminated from the equation,
getting rid of two 2-input ANDs and one 2-input OR.

6.111 Fall 2016 Lecture 2

Boolean Minimization:
An Algebraic Approach

Lets simplify the equation from slide #3:
Y=A-B-C+A-B-C+A-B-C+A-B-C
Using the identity
aA+aA=a
For any expression O and variable A:

Y=A-B-C+A-B-C+A-B-C+A-B-C

Y=B-C+A-C+A-B

The tricky part: some terms participate in more than one

reduction so can’t do the algebraic steps one at a time!
6.111 Fall 2016 Lecture 2

21

Karnaugh Maps: A Geometric Approach

K-Map: a truth table arranged so that terms which differ by exactly one
variable are adjacent to one another so we can see potential reductions
easily.

Here's the layout of a 3-variable K-map filled in
with the values from our truth table:

Why did he
shade that

AB row Gray?
Yy |00 |01 | 11|10 i;
o|lo|o]|1]|oO
10| 1]1]1

=== = OO0 0|0>
== OO0~~~ O O|w

= IO=m| O~ O~ O|N

== = ORI 0|0|0|XK

It's cyclic. The left edge is adjacent o the right
edge. It'sreally justa flattened out cube.

6.111 Fall 2016 Lecture 2 22

On to Hyperspace
Here's a 4-variable K-map:

AB

Z |00 01|11)10 .
00 -
01 !
cD 1 /
10

Again it's cyclic. The left edge is adjacent to the right edge,
and the top is adjacent to the bottom.

== O -
== 10O|O0
oO|O0|O|O
[N P Y

We run out of steam at 4 variables - K-maps are hard o draw and
use in three dimensions (5 or 6 variables) and we're not equipped
to use higher dimensions (> 6 variables)!

6.111 Fall 2016 Lecture 2

Finding Subcubes

We can identify clusters of “irrelevent” variables by circling
adjacent subcubes of 1s. A subcube is just a lower dimensional

cube. AB
Z 00|01 (11|10
AB 00| . 1:] 0|0 :1,
Y |00 | 01| 11 |10 D 010 0 0 0

T

c 0 0 0 :ll O. 11“|-1:' 1] 0 :1
1] o | [ut)] 1 10 [{u:] 1J[o |1
| - : B
Three 2x1 subcubes Three 2x2 subcubes

The best strategy is generally a greedy one.
- Circle the largest N-dimensional subcube (2N adjacent 1's)

4x4,4x2,4x1, 2x2, 2x1, 1x1
- Continue circling the largest remaining subcubes
(even if they overlap previous ones)

- Circle smaller and smaller subcubes until no 1s are left.

6.111 Fall 2016 Lecture 2 24

Write Down Equations

Write down a product term for the portion of each
cluster/subcube that is invariant. You only need to include
enough terms so that all the 1's are covered. Result: a minimal
sum of products expression for the truth table.

AB e N
oofot]1uf10 N
cLo oo "1, | 0 Y=A-C+B-C+A-B
1] o |1 [t .1 J
C _ R
We're donel!
AB 9
z|oo]ot|11]10 :
00| t[o]o [| "
o0 0101010 Z=B-D+B-C+A-C
nl(r| noln R
o] 5t - T3l e m—— 1
10 L1,: 1] o |'1],- J

6.111 Fall 2016) Cecture 2

Two-Level Boolean Minimization

Two-level Boolean minimization is used to find a sum-of-products
representation for a multiple-output Boolean function that is
optimum according to a given cost function. The typical cost
functions used are the number of product terms in a two-level
realization, the number of literals, or a combination of both. The
two steps in two-level Boolean minimization are:

*Generation of the set of prime product-terms for a given function.

*Selection of a minimum set of prime terms to implement the
function.

We will briefly describe the Quine-McCluskey method which was
the first algorithmic method proposed for two-level minimization
and which follows the two steps outlined above. State-of-the-art
logic minimization algorithms are all based on the Quine-McCluskey
method and also follow the two steps above.

6.111 Fall 2016 Lecture 2

26

Prime Term Generation

F=f(WX)YZ)
Start by expressing your Boolean function using O- WXYZ lahel
: , . 0000 O
terms (product terms with no don't care care entries). 0101 &5
For compactness the table for example 4-input, 1- 0111 7
output function F(w,x,y,z) shown to the right includes 1000 8
only entries where the output of the function is 1 and 1 8 2 é 12
we've labeled each entry with it's decimal equivalent. 1011 11
1110 14
1111 15

Look for pairs of O-terms that differ in only one bit position and merge
them in a 1-term (i.e., a ferm that has exactly one -' entry). Next 1-terms
are examined in pairs to see if the can be merged into 2-terms, etc. Mark
k-terms that get merged into (k+1) terms so we can discard them later.

1-terms: 0, 8 -000[A] 2-terms: 8, 9,10,11 10--[D]
5, 7 01-1[B] 10,11,14,15 1-1-[E]
7,15 -111[C]
8, 9 100-
8,10 10-0 3-terms: none!
9,11 10-1
Example due to 10,11 101- Label unmerged terms:
Srini Devadas .
10,14 1-10 these terms are primel!
11,15 1-11

6.111 Fall 2016 ’ Lecture 2

27

Prime Term Table

An "X" in the prime term table in row R and column K signifies that the O-
term corresponding to row R is contained by the prime corresponding to

column K.
— ABCDE
Goal: select the minimum 0000 X —>Aisessential -000
set of primes (columns) 0101 . X . . . ——>Bisessential 011
such that there is at least (l)(l)éé X X X M
w > LLX .
,one X" in eyery r‘ow This 1001 - X . —Disessential 10--
is the classical minimum 1010 XX
covering problem. 1011 - XX
1110 X —>Eisessential 1-1-
1111 . . X . X

Each row with a single X signifies an essential prime term since any prime
implementation will have to include that prime term because the
corresponding O-term is not contained in any other prime.

In this example the essential primes "cover” all the O-terms.
F=f(WXYZ)=XYZ+WXZ+ WX + WY

6.111 Fall 2016 Lecture 2

28

Logic that defies SOP simplification

Full Adder S
C. A B S C c/aB Joo ot [11] 10
O‘ 0 O 0 0n AB 0o |[o|t]olt
0 01 1 0 l l 1 1]lof]1]o
0 10 1 0 C
0o 11 01 (o ¢ (Z/AB 00 o111 10
1 00 1 0 o Jo|o[]t][o
1 01|01 ! o N (813 3]
1 1 0 01 5
1 11 1 1

S=A-B-C+A-B-C+A-B-C+A-B-C=A®B®C,
Co,=A-C+B-C+A-B
The sum S doesn't have a simple sum-of-products implementation

even though it can be implemented using only two 2-input XOR
gates.

Logic Synthesis Using MUXes

Truth Table
A c B aly
If Cis1th Y 0 0 ojo
I en
B copy Bto Y, 0 0 1j1
c otherwise copy 0 1 ojo
AteY o 1 11 A 4-input Mux
— 1 0 ofo .
implemented as
PO a tree
2-input Multiplexer 1 1 of1 I,
11 1|1 I, B

Y
I
B A I, B‘
A So S
Gate

schematic
symbol

Systematic Implementation of
Combinational Logic

Consider implementation of some
arbitrary Boolean function, F(A,B)

... using a MULTIPLEXER

Full-Adder
Carry Out Logic

as the only circuit element:
AlBlc]y O_O\
o/ofofo _?:O— 1
olof[1]o /’?: g
o/1]/0]o0-
ol1]1]1 ?}7(1)— 4
1 o]ofo —/1 —°
tiofafa | 6
1]1]0]1 ‘/1 7j
11]1]17 ABC,

out

Systematic Implementation of
Combinational Logic

Same function as on previous slide, but this
time let's use a 4-input mux

Full-Adder
A|B|C|Y Carry Out Logic
olofofo }
olo 1lo) — 0—o
o/1 0]o)_ _—C—1 c
o111 } Cir—2 o
1]olofo }/ 1 3
1/o/1]1 /
1101 } AB
1111

Xilinx Virtex IT FPGA

s
SSRPSPVINRIOR 11 1111111

=

| |

oooooog
| |
0
00

-LI0ICd
L]

I

LI

Configurable Logic ‘-._ "

Programmable 1/Os

CLB Block SelectRAM Multiplier

Virtex-ll Architecture Overview

XC2V6000:

+ 957 pins, 684 IOBs

* CLB array: 88 cols x 96/col = 8448 CLBs

- 18Kbit BRAMs = 6 cols x 24/col = 144 BRAMs = 2.5Mbits
- 18x18 multipliers = 6 cols x 24/col = 144 multipliers

6.111 Fall 2016 Lecture 2 Figures from Xilinx Virtex |l datasheet 33

Virtex II CLB

~
N
[>TBUF XoY1 CQu RAM16 . DORCY
D> TBUF Xovo { " ~
Sice N MUXFx
X1Y1 ~ N —
SAL16
Slice ~ AN Register
Switch cout Iﬁ)rl .
Matrix SH.IFr | RAM16 N
Slice CIN N)
[xov1 | ~_ MUXFs
Fast A \\
Connects SR)
X0Y0 to neighbors A LU'}\ Register
AN F N
CIN
Virtex-Il CLB Element [Arithmetic Logic
Virtex-ll Slice Configuration
16 bits of RAM which can be configured as a 16x1
single- or dual-port RAM, a 16-bit shift register,
or a 16-location IOOkUP table Figures from Xilinx Virtex Il datasheet
6.111 Fall 2016 Lecture 2 34

Virtex II Slice Schematic

SHIFTIN couT

0
SOPIN o

D—- ——— > SOPOUT
T 1 \‘ YBMUX
, uu'xcv\ . EME I
Q 1

| GYMUX

e ——

muuiD»] al——a
PROD ¥
G1 - CE—CE
T AR [cL— e
l:— SR_REV

SHIFTOUT

SUCEWE[R2Q)
e > MG

CE >
=] Shared between |
K 1 [x4y Registers |) o
SA > Figures from Xilinx Virtex Il datasheet

=7
Virtex-ll Slice (Top Half)

6.111 Fall 2016 Lecture 2 35

Virtex IT Sum-of-products

|
oRcy | { oReY | |
I t sop:

I I 1
e |
ice 1] Slice 31 :
| | |
I 1)
| | |
O | i
b | |
| | I
| I |
I 1 - 1 |
Slice o; | = | Slice 2: :
| % : LuT @ 1 |
| | I

] +
memVeg il Vegd
Y+ - S
Horizontal Cascade Chain
Figures from Xilinx Virtex Il datasheet
6.111 Fall 2016 Lecture 2 36

Spartan 6 FPGA

GTP Transcoivars
Infograted Biock
for PCI Expross

108 Bank

108 Ceoas
W Ceds

Memaory Controliee
Biock

Boock AAM
Column

DSP Colurmn

Clock Managamant
T Coturmn

Spartan 6 SliceM Schematic

f

Figures from Xilinx
Spartan 6 CLB datasheet

"‘2.__@13”

£

] Hi
i

—F

T

Oscilloscope Oscilloscope Controls

OO SRS T oSy (2 IR

ol
=
S VIRTICAL) FCRETATAL 8 TRIGEAN iy A0 &

w

SGrowren | Qromonl | E[

6.111 Fall 2016 39

* Auto Seft, soft menu + Signal measurement
keys — time,
— frequency,
: — voltage
’ Trlgger' - cursgrs
— channel, — single sweep
— slope,
- Level
» Image capture
* Input
— AC, DC coupling,
— 10x probe,
— lkhz calibration
source,

— probe calibration,
— bandwidth filter

6.111 Fall 2016 40

