

Logic Synthesis

- Primitive logic gates, universal gates
- Truth tables and sum-of-products
- Logic simplification
- Karnaugh Maps, Quine-McCluskey
- General implementation techniques: muxes and look-up tables (LUTs)

Reminder: Lab \#1 due this Thursday!

Late Policies

- Lab 1 check-offs - sign-up on checkoff queue in lab - FIFO during staffed lab hours.
- Please don't assume that you can wait until the last minute!
- No check-offs on Friday or Saturday
- Lab grade $=$ Checkoff + Verilog grade (equal weighting)
- On-time check-off:
- $20 \% /$ day late penalty (no penalty for Friday or Saturday)
- Max penalty 80% reduction.
- All labs must be checked off before you can start your final project. We've learned that if you're struggling with the labs, the final project won't go very well.
- Lpset - must be submitted on time.

Schematics \& Wiring

- IC power supply connections generally not drawn. All integrated circuits need power!
- Use standard color coded wires to avoid confusion.
-red: positive
- black: ground or common reference point
- Other colors: signals
- Circuit flow, signal flow left to right
- Higher voltage on top, ground negative voltage on bottom
- Neat wiring helps in debugging!

Wire Gauge

- Wire gauge: diameter is inversely proportional to the wire gauge number.
Diameter increases as the wire gauge
decreases. 2, 1, 0,00,000(3/0) up to 7/0.
- Resistance
- 22 gauge .0254 in 16 ohm/1000 feet
- 12 gauge .08 in $1.5 \mathrm{ohm} / 1000$ feet
- High voltage $A C$ used to reduce loss
- 1 cm cube of copper has a resistance of 1.68 micro ohm (resistance of copper wire scales linearly: length/area)

' 80 '90
Upgraded versions of prior models
Source: Intel
6.111 Fall 2016

CMOS Forever?

Mastering Moore's Law

0 billion 1 billion 100 million microprocessor chips
 2000
'10
THE WALL STREET JOURNAL.

Timing Specifications

Propagation delay ($t_{\text {PD }}$): An upper bound on the delay from valid inputs to valid outputs (aka " $\dagger_{\text {PD }, M A X}$ ")

Design goal: minimize propagation delay

Diminishing Returns *

Creating smaller circuitry has placed more transistors on chips but triggered higher costs.

80 nanometers ${ }^{\circ}$

smaller
Design cost: $\$ 16.4$ million
smaller...

Design cost: \$131.6 million

0
"Billionths of a meter

Contamination Delay

 an optional, additional timing specContamination delay $\left(\dagger_{C D}\right)$: A lower bound on the delay from invalid inputs to invalid outputs (aka " $\dagger_{\text {PD,MIN }}$ ")

Do we really need $\dagger_{c D}$?

Usually not... it'll be important when we design circuits with registers (coming soon!)

If $\dagger_{c D}$ is no \dagger specified, safe to assume it's 0 .

The Combinational Contract

$A \rightarrow \infty-B \quad$| A | B | |
| :--- | :--- | :--- |
| | 0 | 1 |
| 1 | 0 | |\(\quad \begin{aligned} \& \dagger_{P D} propagation delay

\&

\& \end{aligned}\)

1. No Promises during
2. Default (conservative) spec: $\dagger_{C D}=0$

Functional Specifications

A	B	C	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

3 binary inputs
so $2^{3}=8$ rows in our truth table
An concise, unambiguous technique for giving the functional specification of a combinational device is to use a truth table to specify the output value for each possible combination of input values (N binary inputs $\rightarrow 2^{N}$ possible combinations of input values).

Here's a Design Approach

1. Write out our functional spec as a truth table

A	B	C	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

-it's systematic!

it works!
it's easy!
-are we done yet???
in
2. Write down a Boolean expression with terms covering each '1' in the output:

SUM-OF-PRODUCTS

Sum (+): ORs
Products (•): ANDs

S-O-P Building Blocks

INVERTER:

inversion

AND:

OR:

$$
\left.\begin{array}{cc|c}
A & B & Z \\
\hline 0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
A & Z & B \cdot B \\
\hline & B & 0
\end{array}\right)
$$

Straightforward Synthesis

$$
Y=\bar{A} \cdot B \cdot C+A \cdot \bar{B} \cdot C+A \cdot B \cdot \bar{C}+A \cdot B \cdot C
$$

We can use
SUM-OF-PRODUCTS
to implement any logic function.

Only need 3 gate types: INVERTER, AND, OR

Propagation delay:

- 3 levels of logic

- No more than 3 gate delays assuming gates with an arbitrary number of inputs. But, in general, we'll only be able to use gates with a bounded number of inputs (bound is ~ 4 for most logic families).

SOP w/ 2-input gates

Previous example restricted to 2-input gates:

Using the timing specs given to the left, what are $t_{P D}$ and $t_{C D}$ for this combinational circuit?

Hint: to find overall $t_{P D}$ we need to find max $t_{P D}$ considering all paths from inputs to outputs.

ANDs and ORs with > 2 inputs

More Building Blocks

CMOS gates are naturally inverting so we want to use NANDs and NORs in CMOS designs..

NAND - NOR Internals

Dual-In-Line Package

This device contains four independent gates each
of which performs the logic NAND function.

NAND

NOR

Universal Building Blocks

NANDs and NORs are universal:

Any logic function can be implemented using only NANDs (or, equivalently, NORs). Note that chaining/treeing technique doesn't work directly for creating wide fan-in NAND or NOR gates. But wide fan-in gates can be created with trees involving both NANDs, NORs and inverters.

SOP with NAND/NOR

When designing with NANDs and NORs one often makes use of

De Morgan's laws:

De Morgan-ized NAND symbol
NAND form: $\overline{A \cdot B}=\bar{A}+\bar{B}$
NOR form: $\overline{A+B}=\bar{A} \cdot \bar{B}$2

So the following "SOP" circuits are all equivalent (note the use of De Morgan-ized symbols to make the inversions less confusing):

AND/OR form

NAND/NAND form This will be handy in Lab 1 since you'll be able to use just 7400's to implement your circuit

NOR/NOR form
All these "extra" inverters may seem less than ideal but often the buffering they
provide will reduce the capacitive load on the inputs and increase the output drive.

Boolean Minimization:
 An Algebraic Approach

Lets simplify the equation from slide \#3

$$
Y=\bar{A} \cdot B \cdot C+A \cdot \bar{B} \cdot C+A \cdot B \cdot \bar{C}+A \cdot B \cdot C
$$

Using the identity

$$
\alpha A+\alpha \bar{A}=\alpha
$$

For any expression α and variable A :

The tricky part: some terms participate in more than one reduction so can't do the algebraic steps one at a time!

On to Hyperspace

Here's a 4-variable K-map:

Again it's cyclic. The left edge is adjacent to the right edge, and the top is adjacent to the bottom.

We run out of steam at 4 variables - K-maps are hard to draw and use in three dimensions (5 or 6 variables) and we're not equipped to use higher dimensions (> 6 variables)!

Karnaugh Maps: A Geometric Approach

K-Map: a truth table arranged so that terms which differ by exactly one variable are adjacent to one another so we can see potential reductions easily.

A	B	C	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Here's the layout of a 3-variable K-map filled in with the values from our truth table:

It's cyclic. The left edge is adjacent to the right edge. It's really just a flattened out cube.

Finding Subcubes

We can identify clusters of "irrelevent" variables by circling adjacent subcubes of 1 s . A subcube is just a lower dimensional cube.

	$A B$				
	y	00	01	11	10
	0	0	0	'1'	0
c	1	0	1	1:11	1.

Three 2×1 subcubes

Three 2×2 subcubes

The best strategy is generally a greedy one.

- Circle the largest N -dimensional subcube (2^{N} adjacent 1 's)

$$
4 \times 4,4 \times 2,4 \times 1,2 \times 2,2 \times 1,1 \times 1
$$

- Continue circling the largest remaining subcubes
(even if they overlap previous ones)
- Circle smaller and smaller subcubes until no 1s are left.

Write Down Equations

Write down a product term for the portion of each cluster／subcube that is invariant．You only need to include enough terms so that all the 1＇s are covered．Result：a minimal sum of products expression for the truth table．

$C D$

	$A B$				
Z	00	01	11	10	
00	． $1:$	0	0	：1．	$\ldots{ }^{\circ}$
01	0	0	0	0	
11	1	1	0	11	$\stackrel{+}{1}$
10	$1:$	1.	0	$: 11$	，ーーー－ー－－－－－

Two－Level Boolean Minimization

Two－level Boolean minimization is used to find a sum－of－products representation for a multiple－output Boolean function that is optimum according to a given cost function．The typical cost functions used are the number of product terms in a two－level realization，the number of literals，or a combination of both．The two steps in two－level Boolean minimization are：
－Generation of the set of prime product－terms for a given function．
－Selection of a minimum set of prime terms to implement the function．

We will briefly describe the Quine－McCluskey method which was the first algorithmic method proposed for two－level minimization and which follows the two steps outlined above．State－of－the－art logic minimization algorithms are all based on the Quine－McCluskey method and also follow the two steps above．

Prime Term Generation

Start by expressing your Boolean function using 0－ terms（product terms with no don＇t care care entries）． For compactness the table for example 4－input， 1 output function $F(w, x, y, z)$ shown to the right includes only entries where the output of the function is 1 and we＇ve labeled each entry with it＇s decimal equivalent．
$F=f(W, X, Y, Z)$
w X Y Z label
00000
$0101 \quad 5$
$\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0\end{array}$
10000
1001
$\begin{array}{lllll}1 & 0 & 1 & 0 & 10 \\ 1 & 0 & 1 & 1 & \end{array}$
$\begin{array}{lllll}1 & 0 & 1 & 1 & 11 \\ 1 & 1 & 1 & 0 & 14\end{array}$
$\begin{array}{lllll}1 & 1 & 1 & 0 & 14 \\ 1 & 1 & 1 & 1 & 15\end{array}$
111115
Look for pairs of 0－terms that differ in only one bit position and merge them in a 1－term（i．e．，a term that has exactly one＇－＇entry）．Next 1－terms are examined in pairs to see if the can be merged into 2 －terms，etc．Mark k－terms that get merged into（ $k+1$ ）terms so we can discard them later．

1－terms：	0， 8	－000［A］	2－terms： $\begin{array}{rrr}8, & 9,10,11 & 10-[\mathrm{D}] \\ 10,11,14,15 & 1-1-[\mathrm{E}\end{array}$		
	5， 7	01－1［B］			
	7，15	－111［C］			
	8， 9	100－	3－terms：none！		
	8，10	10－0			
Example due to Srini Devadas	9，11	10－1	Label unmerged terms： these terms are prime！		
	10， 11	101－			
	10，14	1－10			
	11，15	1－11			
	14，15	111－			

Prime Term Table

$A n$＂X＂in the prime term table in row R and column K signifies that the $0-$ term corresponding to row R is contained by the prime corresponding to column K．

Goal：select the minimum set of primes（columns） such that there is at least one＂X＂in every row．This is the classical minimum covering problem．

ABCDE

0000	$\begin{array}{ll} \text { A B C D E } \\ \text { X. . . . } \end{array}$	\longrightarrow A is essential－000
0101	X	$\rightarrow B$ is essential $01-$
0111	X X	
1000	X ．． X	
1001	X	\rightarrow D is essential 10
1010	X X	
1011	X X	
1110		\longrightarrow E is essential
1111		

Each row with a single X signifies an essential prime term since any prime implementation will have to include that prime term because the corresponding 0 －term is not contained in any other prime．

In this example the essential primes＂cover＂all the 0 －terms．

$$
F=f(W, X, Y, Z)=\bar{X} \bar{Y} \bar{Z}+\bar{W} X Z+W \bar{X}+W Y
$$

Logic that defies SOP simplification

C_{i}	A	B	S	C_{0}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$
\begin{aligned}
S & =\bar{A} \cdot B \cdot \bar{C}+A \cdot \bar{B} \cdot \bar{C}+\bar{A} \cdot \bar{B} \cdot C+A \cdot B \cdot C=A \oplus B \oplus C_{i} \\
C_{O} & =A \cdot C+B \cdot C+A \cdot B
\end{aligned}
$$

The sum S doesn't have a simple sum-of-products implementation even though it can be implemented using only two 2 -input XOR gates.

Systematic Implementation of Combinational Logic

Logic Synthesis Using MUXes

Gate symbol

schematic

A 4-input Mux implemented as a tree

Truth Table

$S_{0} \quad S_{1}$
6.111 Fall 2016

Systematic Implementation of Combinational Logic

Same function as on previous slide, but this time let's use a 4-input mux

XC2V6000:

- 957 pins, 684 IOBs
- CLB array: 88 cols $\times 96 / \mathrm{col}=8448$ CLBs
- 18 Kbit BRAMs $=6 \mathrm{cols} \times 24 / \mathrm{col}=144$ BRAMs $=2.5 \mathrm{Mbits}$
- 18×18 multipliers $=6$ cols $\times 24 / \mathrm{col}=144$ multipliers

Virtex II Slice Schematic

16 bits of RAM which can be configured as a 16×1 single- or dual-port RAM, a 16-bit shift register, or a 16-location lookup table

Figures from Xilinx Virtex II datasheet

Virtex II Sum-of-products

Spartan 6 SliceM Schematic

