
Sequential Logic
• Digital state: the D-Register
• Timing constraints for D-Registers
• Specifying registers in Verilog
• Blocking and nonblocking assignments
• Examples

6.111 Fall 2016 1Lecture 4

Reminder: Lab #2 due Thursday

Use Explicit Port Declarations

6.111 Fall 2015

2
mux32two adder_mux(b, 32'd1, f[0], addmux_out);

mux32two adder_mux(.i0(b), .i1(32'd1),
.sel(f[0]), .out(addmux_out));

Order of the ports matters!

module mux32two
(input [31:0] i0,i1,
input sel,
output [31:0] out);

assign out = sel ? i1 : i0;
endmodule

Verilog Summary

• Verilog – Hardware description language – not software program.

• A convention: lowercase for variables, UPPERCASE for
parameters
module blob

#(parameter WIDTH = 64, // default width: 64 pixels
HEIGHT = 64, // default height: 64 pixels
COLOR = 3'b111) // default color: white

(input [10:0] x,hcount, input [9:0] y,vcount, output reg [2:0] pixel);
endmodule

• wires

6.111 Fall 2016 Lecture 4 3

wire a,b,z; // three 1-bit wires
wire [31:0] memdata; // a 32-bit bus
wire [7:0] b1,b2,b3,b4; // four 8-bit buses
wire [WIDTH-1:0] input; // parameterized bus

Examples

6.111 Fall 2016 Lecture 4 4

parameter MSB = 7; // defines msb as a constant value 7

parameter E = 25, F = 9; // defines two constant numbers

parameter BYTE_SIZE = 8,
BYTE_MASK = BYTE_SIZE - 1;

parameter [31:0] DEC_CONST = 1’b1; // value converted to 32 bits

parameter NEWCONST = 3’h4; // implied range of [2:0]

parameter NEWCONS = 4; // implied range of at least [31:0]

Something We Can’t Build (Yet)

What if you were given the following design specification:

When the button is pushed:
1) Turn on the light if

it is off
2) Turn off the light if

it is on

The light should change
state within a second
of the button press

button light

What makes this circuit so different
from those we’ve discussed before?

1. “State” – i.e. the circuit has memory
2. The output was changed by a input

“event” (pushing a button) rather
than an input “value”

6.111 Fall 2016 5Lecture 4

Digital State
One model of what we’d like to build

Plan: Build a Sequential Circuit with stored digital STATE –

• Memory stores CURRENT state, produced at output
• Combinational Logic computes

• NEXT state (from input, current state)

• OUTPUT bit (from input, current state)

• State changes on LOAD control input

Combinational
Logic

Current
State

Next
State

Input Output

Memory
Device

LOAD

When Output depends on input
and current state, circuit is
called a Mealy machine. If
Output depends only on the
current state, circuit is called
a Moore machine.

6.111 Fall 2016 6Lecture 4

Our next building block: the D register

D
CLK

Q

The edge-triggered D register: on
the rising edge of CLK, the value of
D is saved in the register and then
shortly afterwards appears on Q.

6.111 Fall 2016 7Lecture 4

D-Register Timing - I

CLK

D

Q

≤tPD

tPD: maximum propagation delay, CLK Q

tCD: minimum contamination delay, CLK Q

≥tCD

≥tSETUP

tSETUP: setup time
How long D must be stable before the rising edge of CLK

≥tHOLD

tHOLD: hold time
How long D must be stable after the rising edge of CLK

6.111 Fall 2016 8Lecture 4

D-Register Internals – 74LS74

CLK

D

Q

≤tPD

≥tCD

≥tSETUP ≥tHOLD

6.111 Fall 2016 9Lecture 4

CLK
tSETUP = 20ns

tHOLD = 5ns tPD-LH = 25ns

tPD-HL = 40ns

D-Register Timing - II

CLK
tPD,reg1

logicD Q D Q

CLK

reg1 reg2

tPD,logic

tPD,reg1 + tPD,logic + tSETUP,reg2 ≤ tCLK

tCLK

≥ tSETUP,reg2 The good news: you can
choose tCLK so that this
constraint is satisfied!

tCD,reg1

tCD,logic

tCD,reg1 + tCD,logic ≥ tHOLD,reg2

The bad news: you have to change
your design if this constraint isn’t
met.

6.111 Fall 2016 10Lecture 4

Single-clock Synchronous Circuits

Single-clock Synchronous Discipline
• No combinational cycles

• Only care about value of
combinational circuits just before
rising edge of clock

• Clock period greater than every
combinational delay

• Change saved state after noise-
inducing logic transitions have
stopped!

We’ll use Registers in a highly constrained way to build digital
systems:

• Single clock signal shared among
all clocked devices (one clock
domain)

Does that
symbol

register?

6.111 Fall 2016 11Lecture 4

Clocks are Not Perfect: Clock Skew

D

clk1

QIn Combinational
Logic

D

clk2

Q

Wire delay

clk1

clk2

δ>0

CLout

tclk2 – tclk1tskew =

6.111 Fall 2016 Lecture 4 12

Positive and Negative Skew

R1
In

(b) Negative skew

Combinational
LogicD Q

tCLK1

delay

tCLK2

R2
D Q Combinational

Logic

tCLK3

R3
• • •D Q

delay CLK

CLK1

CLK2

TCLK



TCLK  

 th

2

1

4

3
R1

In

(a) Positive skew

Combinational
LogicD Q

tCLK1CLK

delay

tCLK2

R2
D Q Combinational

Logic

tCLK3

R3
• • •D Q

delay

CLK1

CLK2

TCLK



TCLK + 

2

1

4

3

Receiving edge arrives before the launching edge

Launching edge arrives before the receiving edge

Adapted from J. Rabaey, A. Chandrakasan, B. Nikolic,
“Digital Integrated Circuits: A Design Perspective” Copyright 2003 Prentice Hall/Pearson.

6.111 Fall 2016 Lecture 4 13

D-Register Timing With Skew

CLKreg1

logicD Q D Q

CLK

reg1 reg2

tPD,reg1+ tPD,logic

≥ tSETUP,reg2

tCD,reg1+tCD,logic

skew±skew

CLKreg2

In the real world the clock signal arrives
at different registers at different times.
The difference in arrival times (pos or
neg) is called the clock skew tskew.
tskew = tRn,clk2 – tRn,clk1

≥ tHOLD,reg2

6.111 Fall 2016 14Lecture 4

CLKreg2 rising edge might fall
anywhere in this region. Which skew is tougher to deal with (pos or neg)?

We can update our two timing constraints
to reflect the worst-case skew

Setup time: tRn,clk = tRn+1,clk

tRn,clk1+tPD,reg1+tPD,logic +tSETUP,reg2 ≤ tRn+1,clk2

Hold time:
tRn,clk1+tCD,reg1+tCD,logic ≥ tRn,clk2+tHOLD,reg2
tCD,reg1+tCD,logic ≥ tHOLD,reg2+ tskew

Thus clock skew increases the minimum
cycle time of our design and makes it
harder to meet register hold times.

tPD,reg1+tPD,logic+ tSETUP,reg2 ≤ tCLK + tskew

Delay Estimation : Simple RC Networks

V out

R on

V DD

(b) High-to-low

CL

V out

R on

V DD

(a) Low-to-high

CL

vout

vin C

R

tp = ln (2)  = 0.69 RC

review

Vin Vout

CL

VDD

Vout

tf

tpHL tpLH

tr
t

Vin

t

90%

10%

50%

50%

6.111 Fall 2016 Lecture 4 15

RC Equation

6.111 Fall 2016 Lecture 4 16

dt
dVC c

c
c V

dt
dVRC 

Vs = 5 V

Switch is closed t<0

Switch opens t>0

Vs = VR + VC

Vs = iR R+ Vc iR =

Vs =

R

+
Vc
-

Vs = 5 V












RC
t

sc eVV 1












RC
t

c eV 15

Clocks are Not Perfect: Clock Jitter

6.111 Fall 2016 Lecture 4 17

tpd, tsu, thold

tclk – 2tjitter > tpd + tsu + tlogic

Typical crystal oscillator
100mhz (10ns)
Jitter: 1ps

Sequential Circuit Timing

Questions:
• Constraints on tCD for the logic?

• Minimum clock period?

• Setup, Hold times for Inputs?

Combinational
Logic

Current
State

New
State

Input Output

Clock tCD,L = ?
tPD,L = 5ns

tCD,R = 1ns
tPD,R = 3ns
tS,R = 2ns
tH,R = 2ns

> 1 ns

> 10 ns (tPD,R+tPD,L+ tSETUP,R)

tSETUP,Input = tPD,L +tSETUP,R
tHOLD,Input = tHOLD,R -tCD,L

This is a simple Finite State Machine … more on next time!
6.111 Fall 2016 18Lecture 4

The Sequential always Block
Edge-triggered circuits are described using a sequential always
block

module comb(input a, b, sel,
output reg out);

always @(*) begin
if (sel) out = b;
else out = a;

end

endmodule

module seq(input a, b, sel, clk,
output reg out);

always @(posedge clk) begin
if (sel) out <= b;
else out <= a;

end

endmodule

Combinational Sequential

6.111 Fall 2016 19Lecture 4

Note: The following is incorrect syntax: always @(clear or negedge clock)
If one signal in the sensitivity list uses posedge/negedge, then all signals must.

 Assign any signal or variable from only one always block. Be wary of
race conditions: always blocks with same trigger execute concurrently…

Importance of the Sensitivity List
• The use of posedge and negedge makes an always block

sequential (edge-triggered)
• Unlike a combinational always block, the sensitivity list does

determine behavior for synthesis!

module dff_sync_clear(
input d, clearb, clock,
output reg q

);
always @(posedge clock)

begin
if (!clearb) q <= 1'b0;
else q <= d;

end
endmodule

D-Register with synchronous clear D-Register with asynchronous clear

always block entered only at
each positive clock edge

always block entered immediately when
(active-low) clearb is asserted

module dff_sync_clear(
input d, clearb, clock,
output reg q

);
always @(negedge clearb or posedge clock)

begin
if (!clearb) q <= 1'b0;
else q <= d;

end
endmodule

6.111 Fall 2016 20Lecture 4

Blocking vs. Nonblocking Assignments
• Verilog supports two types of assignments within always blocks,

with subtly different behaviors.
• Blocking assignment (=): evaluation and assignment are immediate

always @(*) begin
x = a | b; // 1. evaluate a|b, assign result to x
y = a ^ b ^ c; // 2. evaluate a^b^c, assign result to y
z = b & ~c; // 3. evaluate b&(~c), assign result to z

end

Nonblocking assignment (<=): all assignments deferred to end of
simulation time step after all right-hand sides have been
evaluated (even those in other active always blocks)

Sometimes, as above, both produce the same result. Sometimes, not!

always @(*) begin
x <= a | b; // 1. evaluate a|b, but defer assignment to x
y <= a ^ b ^ c; // 2. evaluate a^b^c, but defer assignment to y
z <= b & ~c; // 3. evaluate b&(~c), but defer assignment to z
// 4. end of time step: assign new values to x, y and z

end

6.111 Fall 2016 21Lecture 4

Blocking vs. Nonblocking Assignments
• Guaranteed question on job interviews with Verilog questions.

• Blocking assignment (=): evaluation and assignment are immediate;
subsequent statements affected.

• Nonblocking assignment (<=): all assignments deferred to end of
simulation time step after all right-hand sides have been
evaluated (even those in other active always blocks)

Sometimes, as above, both produce the same result. Sometimes,
not!

6.111 Fall 2016 22Lecture 4

Assignment Styles for Sequential Logic

Will nonblocking and blocking assignments both produce the
desired result? (“old” means value before clock edge, “new” means
the value after most recent assignment)

module nonblocking(
input in, clk,
output reg out

);
reg q1, q2;
always @(posedge clk) begin
q1 <= in;
q2 <= q1; // uses old q1
out <= q2; // uses old q2

end

endmodule

What we want:
Register Based

Digital Delay Line

module blocking(
input in, clk,
output reg out

);
reg q1, q2;
always @(posedge clk) begin
q1 = in;
q2 = q1; // uses new q1
out = q2; // uses new q2

end

endmodule

6.111 Fall 2016 23Lecture 4

Use Nonblocking for Sequential Logic

“At each rising clock edge, q1, q2,
and out simultaneously receive the
old values of in, q1, and q2.”

“At each rising clock edge, q1 = in.
After that, q2 = q1.
After that, out = q2.
Therefore out = in.”

always @(posedge clk) begin
q1 <= in;
q2 <= q1; // uses old q1
out <= q2; // uses old q2

end

always @(posedge clk) begin
q1 = in;
q2 = q1; // uses new q1
out = q2; // uses new q2

end

• Blocking assignments do not reflect the intrinsic behavior of multi-
stage sequential logic

• Guideline: use nonblocking assignments for sequential always blocks

6.111 Fall 2016 24Lecture 4

always block
• Sequential always block: always @(posedge clock)

• Combinatorial always block: always @ *

• Results of operators (LHS) inside always block (sequential and
combinatorial) must be declared as “reg”

• Equivalent Verilog

• case statements must be used within an always block; include
default case

6.111 Fall 2016 Lecture 4 25

assign z = x && y
// z not a “reg”

reg z
always @ *
z = x && y

 same as 
example of

combinatorial
always block

use <=

use =

Sequential always block style

6.111 Fall 2016 Lecture 4 26

// There are two styles for creating this sample divider. The
// first uses sequential always block for state assignment and
// a combinational always block for next-state. This style tends
// to result in fewer errors.
//
// An alternate approach is to use a single always block. An example
// of a divide by 5 counter will illustrate the differences

//////////////////////////////////
// Sequential always block with a
// combinational always block

reg [3:0] count1, next_count1;

always @(posedge clk)
count1 <= next_count1;

always @* begin
if (reset) next_count1 = 0;
else next_count1 =

(count1 == 4) ? 0 : count1 + 1;
end

assign enable1 = (count1 == 4);
//////////////////////////////////

/////////////////////////////////
// Single always block
//

reg [3:0] count2;

always @(posedge clk) begin
if (reset) count2 <= 0;

else count2 <=
(count2 == 4) ? 0 : count2 + 1;

end

assign enable2 = (count2 == 4);

//////////////////////////////////

Coding Guidelines

6.111 Fall 2016 Lecture 4 27

The following helpful guidelines are from the Cummings paper. If
followed, they ensure your simulation results will match what they
synthesized hardware will do:

1. When modeling sequential logic, use nonblocking assignments.
2. When modeling latches, use nonblocking assignments.
3. When modeling combinational logic with an always block, use blocking
assignments.
4. When modeling both sequential and “combinational” logic within the
same always block, use nonblocking assignments.
5. Do not mix blocking and nonblocking assignments in the same always
block.
6. Do not make assignments to the same variable from more than one
always block.
7. Use $strobe to display values that have been assigned using
nonblocking assignments.
8. Do not make assignments using #0 delays.

#1 thing we will be checking in your Verilog submissions!
For more info see: http://www.sunburst-design.com/papers/CummingsSNUG2002Boston_NBAwithDelays.pdf

Guideline 4: Sequential and “combinatorial” logic
in the same always block

6.111 Fall 2008 Lecture 4 28

module nbex1
(output reg q,
input clk, rst_n,
input a, b);

reg y;
always @(a or b)
y = a ^ b;

always @(posedge clk or
negedge rst_n)

if (!rst_n) q <= 1'b0;
else q <= y;

endmodule

module nbex2
(output q,
input clk, rst_n,
input a, b);

reg q;
always @(posedge clk or

negedge rst_n)
if (!rst_n) q <= 1'b0;
else q <= a ^ b;

endmodule

Combinatorial logic

Combinatorial
logic

= vs. <= inside always

module main;
reg a,b,clk;

initial begin
clk = 0; a = 0; b = 1;
#10 clk = 1;
#10 $display("a=%d b=%d\n",a,b);
$finish;

end
endmodule

always @(posedge clk) a = b;
always @(posedge clk) b = a;

always @(posedge clk) begin
a = b; // blocking assignment
b = a; // execute sequentially

end

always @(posedge clk) begin
a <= b; // non-blocking assignment
b <= a; // eval all RHSs first

end

always @(posedge clk) a <= b;
always @(posedge clk) b <= a;

always @(posedge clk) begin
a <= b;
b = a; // urk! Be consistent!

end

A

B

C

D

E

Rule: always change state using <= (e.g., inside always @(posedge clk)…)
6.111 Fall 2016 29Lecture 4

Implementation for on/off button

module onoff(input button, output reg light);
always @(posedge button) light <= ~light;

endmodule

button

light

6.111 Fall 2016 30Lecture 4

Synchronous on/off button

When designing a system that accepts many inputs it would be hard
to have input changes serve as the system clock (which input would
we use?). So we’ll use a single clock of some fixed frequency and
have the inputs control what state changes happen on rising clock
edges.

For most of our lab designs we’ll use a 27MHz system clock (37ns
clock period).

module onoff_sync(input clk, button,
output reg light);

always @ (posedge clk) begin
if (button) light <= ~light;

end
endmodule

6.111 Fall 2016 31Lecture 4

Resetting to a known state

Usually one can’t rely on registers powering-on to a particular initial
state*. So most designs have a RESET signal that when asserted
initializes all the state to known, mutually consistent initial values.

module onoff_sync(input clk, reset, button,
output reg light);

always @ (posedge clk) begin
if (reset) light <= 0;
else if (button) light <= ~light;

end
endmodule

6.111 Fall 2016 32Lecture 4

* Actually, our FPGAs will reset all registers to 0 when the device is
programmed. But it’s nice to be able to press a reset button to return to a
known state rather than starting from scratch by reprogramming the
device.

Clocks are fast, we’re slow!
The circuit on the last slide toggles the light on every rising clock
edge for which button is 1. But clocks are fast (27MHz!) and our
fingers are slow, so how do we press the button for just one clock
edge? Answer: we can’t, but we can add some state that remembers
what button was last clock cycle and then detect the clock cycles
when button changes from 0 to 1.

module onoff_sync(input clk, reset, button,
output reg light);

reg old_button; // state of button last clk
always @ (posedge clk) begin

if (reset)
begin light <= 0; old_button <= 0; end

else if (old_button==0 && button==1)
// button changed from 0 to 1
light <= ~light;

old_button <= button;
end

endmodule
6.111 Fall 2016 33Lecture 4

Asynchronous Inputs in Sequential Systems

What about external signals?

Sequential System

Clock

Can’t guarantee
setup and hold
times will be met!

When an asynchronous signal causes a setup/hold
violation...

Clock

Q
D

I

Transition is missed
on first clock cycle,
but caught on next
clock cycle.

II

Transition is caught
on first clock cycle.

?

III

Output is metastable
for an indeterminate
amount of time.

Q: Which cases are problematic?
6.111 Fall 2016 34Lecture 4

Asynchronous Inputs in Sequential Systems

All of them can be, if more than one happens simultaneously
within the same circuit.

Guideline: ensure that external signals directly feed
exactly one flip-flop

D Q
Sequential System

Clock

This prevents the possibility of I and II occurring in different places in
the circuit, but what about metastability?

D Q

D Q

This
imag
e
canno
t
curre
ntly
be
displa
yed.

Q0

Clock

Clock

Q1

Async
Input

Clocked
Synchronous

System

6.111 Fall 2016 35Lecture 4

Handling Metastability
• Preventing metastability turns out to be an impossible problem
• High gain of digital devices makes it likely that metastable conditions will

resolve themselves quickly
• Solution to metastability: allow time for signals to stabilize

How many registers are necessary?
• Depends on many design parameters (clock speed, device speeds, …)
• In 6.111, a pair of synchronization registers is sufficient

D Q
Complicated

Sequential Logic
System

Clock

D Q D Q

Can be
metastable
right after
sampling

Very unlikely to
be metastable for
>1 clock cycle

Extremely unlikely
to be metastable for
>2 clock cycles

6.111 Fall 2016 36Lecture 4

One last little problem…

6.111 Fall 2016 Lecture 4 37

Mechanical buttons exhibit contact
“bounce” when they change position,
leading to multiple output transitions
before finally stabilizing in the new
position:

We need a
debouncing
circuit!

// Switch Debounce Module
// use your system clock for the clock input
// to produce a synchronous, debounced output
// DELAY = .01 sec with a 27Mhz clock
module debounce #(parameter DELAY=270000-1)

(input reset, clock, bouncey,
output reg steady);

reg [18:0] count;
reg old;

always @(posedge clock)

endmodule

One last little problem…

6.111 Fall 2016 Lecture 4 38

Mechanical buttons exhibit contact
“bounce” when they change position,
leading to multiple output transitions
before finally stabilizing in the new
position:

We need a
debouncing
circuit!

// Switch Debounce Module
// use your system clock for the clock input
// to produce a synchronous, debounced output
// DELAY = .01 sec with a 27Mhz clock
module debounce #(parameter DELAY=270000-1)

(input reset, clock, bouncey,
output reg steady);

reg [18:0] count;
reg old;

always @(posedge clock)
if (reset) // return to known state

begin
count <= 0;
old <= bouncey;
steady <= bouncey;

end
else if (bouncey != old) // input changed

begin
old <= bouncey;
count <= 0;

end
else if (count == DELAY) // stable!

steady <= old;
else // waiting…

count <= count+1;

endmodule

On/off button: final answer

6.111 Fall 2016 39Lecture 4

module onoff_sync(input clk, reset, button_in,
output reg light);

// synchronizer
reg button,btemp;
always @(posedge clk)
{button,btemp} <= {btemp,button_in};

// debounce push button
wire bpressed;
debounce db1(.clock(clk),.reset(reset),

.bouncey(button),.steady(bpressed));

reg old_bpressed; // state last clk cycle
always @ (posedge clk) begin
if (reset)
begin light <= 0; old_bpressed <= 0; end

else if (old_bpressed==0 && bpressed==1)
// button changed from 0 to 1
light <= ~light;

old_bpressed <= bpressed;
end

endmodule

Example: A Simple Counter

0 1

0
1

0

+1

enb
clr

clk

// 4-bit counter with enable and synchronous clear
module counter(input clk,enb,clr,

output reg [3:0] count);
always @(posedge clk) begin

count <= clr ? 4’b0 : (enb ? count+1 : count);
end

endmodule

count
44

Isn’ t this a lot like
Exercise 1 in Lab 2?

6.111 Fall 2016 40Lecture 4

