
System Integration Issues
• Communicating FSMs
• Clocking, theory and practice

6.111 Fall 2016 1Lecture 7

Encoding numbers
State 1

State
2

State 4
State
3

State 0State 0

Memory Controller

6.111 Fall 2016 Lecture 7 2

1GB RAM

6.111 Fall 2016 Lecture 7 3

Combinational
Logic

Current
State

Next
State

Input Output

Clock

always @ *
begin // logic to determine next_state

case (state)
state_1: next_state = . . .
state_2: next_state = . . .
. . .

default: next_state = STATE_0;
endcase

end

always @(posedge clock)
state <= next_state;

FSM

D

6.111 Fall 2016 Lecture 7 4

State 1

State
2

State 4
State
3

State 0State 0

module (
input req, clk,
output reg ras, mux, cas
);

reg [3:0] state, next_state:

parameter [3:0] STATE_0 = 0; // 0000
parameter [3:0] STATE_1 = 1; // 0001
parameter [3:0] STATE_2 = 2; // 0010
parameter [3:0] STATE_3 = 3; // 0011
parameter [3:0] STATE_4 = 4; // 0100

always @(posedge clk) state <= next_state;

always @ * begin
case (state)

STATE_0: next_state = req ? STATE_1 : STATE_0;
STATE_1: next_state = STATE_2;
STATE_2: next_state = STATE_3;
STATE_3: next_state = STATE_4;
STATE_4: next_state = STATE_0;
default: next_state = state_0;

endcase
end

assign ras = !((state==STATE_1)||(state==STATE_2)||(state==STATE_3)||(state==STATE_4));
assign mux = (state==STATE_2)||(state==STATE_3)||(state==STATE_4);
assign cas = !((state==STATE_3)||(state==STATE_4));

endmodule

Glitchy Solution

6.111 Fall 2016 Lecture 7 5

Registered FSM Outputs are
Glitch-Free

reg DC,DN,DD;

// Sequential always block for state assignment
always @ (posedge clk or negedge reset) begin

if (!reset) state <= IDLE;
else if (clk) state <= next;

DC <= (next == GOT_30c || next == GOT_35c ||
next == GOT_40c || next == GOT_45c ||
next == GOT_50c);

DN <= (next == RETURN_5c);
DD <= (next == RETURN_20c || next == RETURN_15c ||

next == RETURN_10c);
end

n

inputs
Next-
State

Comb.
Logic CLK

Output
Comb.
Logic

present state S

n

next
state

CLK

Output
Registers

D Q

State
Registers

D Q

registered
outputs

 Move output generation
into the sequential
always block

 Calculate outputs based
on next state

 Delays outputs by one
clock cycle. Problematic
in some application.

6.111 Fall 2016 Lecture 6 6

Toward FSM Modularity
• Consider the following abstract FSM:

S0

a1

b1 c1

d1

S1 S2 S3 S4 S5 S6 S7 S8 S9

a2

b2 c2

d2 a3

b3 c3

d3

• Suppose that each set of states ax...dx is a “sub-FSM” that produces exactly
the same outputs.

• Can we simplify the FSM by removing equivalent states?
No! The outputs may be the same, but the
next-state transitions are not.

• This situation closely resembles a procedure call or function call in
software...how can we apply this concept to FSMs?

Acknowledgements: Rex Min

6.111 Fall 2016 7Lecture 7

The Major/Minor FSM Abstraction

• Subtasks are encapsulated in minor FSMs with common
reset and clock

• Simple communication abstraction:
– START: tells the minor FSM to begin operation (the call)
– BUSY: tells the major FSM whether the minor is done (the return)

• The major/minor abstraction is great for...
– Modular designs (always a good thing)
– Tasks that occur often but in different contexts
– Tasks that require a variable/unknown period of time
– Event-driven systems

Major FSM

Minor FSM A

Minor FSM B

STARTA

STARTB

BUSYA

BUSYBCLK

RESET RESET

CLK

6.111 Fall 2016 8Lecture 7

Inside the Major FSM

S1
S2

START
S3 S4...

BUSYBUSY

BUSY

BUSY

BUSY BUSY

1. Wait until
the minor FSM

is ready

2. Trigger the
minor FSM (and

make sure it’s
started)

3. Wait until
the minor FSM

is done

START

BUSY

Major FSM
State S1 S2 S2 S3 S3 S3 S4

CLK

Variations:
• Usually don’t need both Step 1 and Step 3
• One cycle “done” signal instead of multi-cycle “busy”

6.111 Fall 2016 9Lecture 7

Inside the Minor FSM

T2
BUSY

T3
BUSY

T4
BUSY

1. Wait for a
trigger from the

major FSM

2. Do some useful work

T1
BUSY

START

START

START

BUSY

Major FSM
State S1 S2 S2 S3 S3 S3 S4

CLK
Minor FSM

State T1 T1 T2 T3 T4 T1 T1

3. Signal to the
major FSM that

work is done

can we
speed

this up?

6.111 Fall 2016 10Lecture 7

Optimizing the Minor FSM

T2
BUSY

T3
BUSY

T4
BUSY

T1
BUSY

START

START

Good idea: de-assert BUSY one cycle early

Bad idea #1:
T4 may not immediately return to T1

T2
BUSY

T3
BUSY

T1
BUSY

START

START T4
BUSY

Bad idea #2:
BUSY never asserts!

T1
BUSY

START

START T2
BUSY

6.111 Fall 2016 11Lecture 7

A Four-FSM Example

Major FSM

Minor FSM A

Minor FSM B

STARTA

STARTB

BUSYA

BUSYB

Minor FSM C
STARTC

BUSYC

TICK

IDLE
STAB
STARTA
STARTB

WTAB

TICK BUSYABUSYB

TICK BUSYA+BUSYB BUSYA+BUSYB

STC
STARTC

BUSYABUSYB

BUSYC

WTC BUSYC

BUSYC

BUSYC

Assume that BUSYA and BUSYB
both rise before either minor
FSM completes. Otherwise, we

loop forever!

Operating Scenario:
• Major FSM is triggered

by TICK
• Minors A and B are

started simultaneously
• Minor C is started once

both A and B complete
• TICKs arriving before the

completion of C are
ignored

6.111 Fall 2016 12Lecture 7

Four-FSM Sample Waveform

IDLE IDLE STAB STAB WTABWTABWTAB STC STC WTC WTC WTC IDLE IDLE STAB
state

tick

STARTA

BUSYA

STARTB

BUSYB

STARTC

BUSYC

Major FSM

Minor FSM A

Minor FSM B

STARTA

STARTB

BUSYA

BUSYB

Minor FSM C
STARTC
BUSYC

TICK

6.111 Fall 2016 13Lecture 7

Clocking and Synchronous Communication
Module M1 Module M2

CLK

Ideal world:

CLKM1

CLKM2

M1 and M2 clock edges aligned in time
6.111 Fall 2016 14Lecture 7

Clock Skew
Module M1 Module M2

CLK

Real world has clock skew:

CLKM1

CLKM2

M2 clock delayed with respect to M1 clock

delay

Oops! Skew has caused a
hold time problem!

1. Wire delay
2. Different clocks!

6.111 Fall 2016 15Lecture 7

Low-skew Clocking in FPGAs

Figures from Xilinx App Notes6.111 Fall 2016 16Lecture 7

Goal: use as few clock domains as possible

Suppose we wanted clocks at f/2, f/4, f/8, etc.:

reg clk2,clk4,clk8,clk16;
always @(posedge clk) clk2 <= ~clk2;
always @(posedge clk2) clk4 <= ~clk4;
always @(posedge clk4) clk8 <= ~clk16;
always @(posedge clk8) clk16 <= ~clk16;

CLK

CLK2

CLK4

CLK8

CLK16

Very hard to have synchronous communication
between clk and clk16 domains

No! don’t do
it this way

6.111 Fall 2016 17Lecture 7

Solution: 1 clock, many enables
Use one (high speed) clock, but create enable signals to select a subset of
the edges to use for a particular piece of sequential logic

reg [3:0] count;
always @(posedge clk) count <= count + 1; // counts 0..15
wire enb2 = (count[0] == 1’b1);
wire enb4 = (count[1:0] == 2’b11);
wire enb8 = (count[2:0] == 3’b111);
wire enb16 = (count[3:0] == 4’b1111);

CLK

ENB2

ENB4

ENB8

ENB16

count 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 1414

= clock edge selected by enable signal

always @(posedge clk)
if (enb2) begin
// get here every 2nd cycle

end

6.111 Fall 2016 18Lecture 7

Using External Clocks
Sometimes you need to communicate synchronously with
circuitry outside of the FPGA (memories, I/O, …)

Problem: different delays along
internal paths for DATA and CLK
change timing relationship

Solutions:

1) Bound internal delay from pin
to internal reg; add that delay
to setup time (tSU) specification

2) Make internal clock edge aligned
with external clock edge (but what
about delay of pad and clock driver)

IO
B

IO
B

CLK

DATA

tSU th

BUFG

REG

6.111 Fall 2016 19Lecture 7

1) Bound Internal Data Delay

Solution: use registers built into the IOB pin interface:

Low-delay
inputs

Low-delay
tristate
outputs

6.111 Fall 2016 20Lecture 7

2) Align external and internal clocks

Uses phase locked loop and digital delay
lines to align CLKFB to CLKIN.

CLK90, CLK180, CLK270 are shifted by ¼
cycle from CLK0.

6.111 Fall 2016 21Lecture 7

Example: Labkit ZBT interface

The lower DCM is used to ensure that the fpga_clock signal, which clocks all of
the FPGA flip-flops, is in phase with the reference clock (clock_27mhz).

6.111 Fall 2016 22Lecture 7

The upper DCM is used to generate the de-skewed clock for the external ZBT
memories. The feedback loop for this DCM includes a 2.0 inch long trace on the
labkit PCB and matches in distance all of the PCB traces from the FPGA to the
ZBT memories. The propagation delay from the output of the upper DCM back
to its CLKFB input should be almost exactly the same as the propagation delay
from the DCM output to the ZBT memories.

Generating Other
Clock Frequencies (again)

The labkit has a 27MHz crystal (37ns period). Use DCM to generate
other frequencies e.g., 65MHz to generate 1024x768 VGA video.

The DCM (ISE only) can also synthesize
certain multiples of the CLKIN frequency
(eg, multiples of 27MHz):

CLKINCLKFX f
D
Mf 








Where M = 2--32 and D = 2--32 with a
output frequency of range of 24MHz to
210MHz.

6.111 Fall 2016 23Lecture 7

Vivado uses a Clock Wizard to simplify clock generation.

Verilog to generate 65MHz clock

// use FPGA's digital clock manager to produce a
// 65MHz clock (actually 64.8MHz)
wire clock_65mhz_unbuf,clock_65mhz;
DCM vclk1(.CLKIN(clock_27mhz),.CLKFX(clock_65mhz_unbuf));
// synthesis attribute CLKFX_DIVIDE of vclk1 is 10
// synthesis attribute CLKFX_MULTIPLY of vclk1 is 24
// synthesis attribute CLK_FEEDBACK of vclk1 is NONE
// synthesis attribute CLKIN_PERIOD of vclk1 is 37
BUFG vclk2(.O(clock_65mhz),.I(clock_65mhz_unbuf));

  MHzMHzfCLKFX 8.6427
10
24









6.111 Fall 2016 24Lecture 7

RESETing to a known state
Just after configuration, all the registers/memories are in a known state
(eg, default value for regs is 0). But you may need to include a RESET
signal to set the initial state to what you want. Note the Verilog initial
block only works in simulation and has no effect when synthesizing
hardware.

Solution: have your logic take a RESET signal which can be asserted on
start up and by an external push button:

// power-on reset generation
wire power_on_reset; // remain high for first 16 clocks
SRL16 reset_sr (.D(1'b0), .CLK(clock_27mhz), .Q(power_on_reset),

.A0(1'b1), .A1(1'b1), .A2(1'b1), .A3(1'b1));
defparam reset_sr.INIT = 16'hFFFF;

// ENTER button is user reset
wire reset,user_reset;
debounce db1(.reset(power_on_reset),.clock(clock_27mhz),

.noisy(~button_enter),.clean(user_reset));
assign reset = user_reset | power_on_reset;

6.111 Fall 2016 25Lecture 7

Debugging: making the state visible
To figure out what your circuit is doing it can be very useful to include
logic that makes various pieces of state visible to the outside world.
Some suggestions:

• turn the leds on and off to signal events, entry into particular pieces of
code, etc.

• use the 16-character fluorescent display to show more complex state
information

• drive useful data onto the ANALYZER pins and use the adapters to hook
them up to the logic analyzer. Include your master clock signal and the
configure the logic analyzer to sample the data on the non-active edge of
the clock (to avoid setup and hold problems introduced by I/O pad delays).
The logic analyzer can capture thousands of cycles of data and display the
results in useful ways (including interpreting multi-bit data as samples of
an analog waveform).

6.111 Fall 2016 26Lecture 7

Encoding numbers







1n

0i
i

i b2v
21121029 28 27 26 25 24 23 22 21 20

0 1 1 1 1 1 0 1 0000

03720

Octal - base 8

000 - 0
001 - 1
010 - 2
011 - 3
100 - 4
101 - 5
110 - 6
111 - 7

0x7d0

Hexadecimal - base 16

0000 - 0 1000 - 8
0001 - 1 1001 - 9
0010 - 2 1010 - a
0011 - 3 1011 - b
0100 - 4 1100 - c
0101 - 5 1101 - d
0110 - 6 1110 - e
0111 - 7 1111 - f

Oftentimes we will
find it convenient to

cluster groups of bits
together for a more

compact notation. Two
popular groupings are
clusters of 3 bits and

4 bits.

It is straightforward to encode positive integers as a sequence of bits.
Each bit is assigned a weight. Ordered from right to left, these
weights are increasing powers of 2. The value of an n-bit number
encoded in this fashion is given by the following formula:

= 200010

Seems natural
to me!

0273 0d7

6.111 Fall 2016 27Lecture 7

• Three common schemes:
– sign-magnitude, ones complement, twos complement

• Sign-magnitude: MSB = 0 for positive, 1 for negative
– Range: -(2N-1 – 1) to +(2N-1 – 1)
– Two representations for zero: 0000… & 1000…
– Simple multiplication but complicated addition/subtraction

Binary Representation of Numbers
How to represent negative numbers?

_
• Ones complement: if N is positive then its negative is N

– Example: 0111 = 7, 1000 = -7

– Range: -(2N-1 – 1) to +(2N-1 – 1)

– Two representations for zero: 0000… & 1111…

– Subtraction is addition followed by end-around carry
(subtraction is different from addition unit)

6.111 Fall 2016 28Lecture 7

Representing negative integers
To keep our arithmetic circuits simple, we’d like to find a representation
for negative numbers so that we can use a single operation (binary addition)
when we wish to find the sum of two integers, independent of whether they
are positive are negative.

We certainly want A + (-A) = 0. Consider the following 8-bit binary addition
where we only keep 8 bits of the result:

11111111
+ 00000001

00000000

which implies that the 8-bit representation of -1 is 11111111. More generally

-A = 0 - A
= (-1 + 1)- A
= (-1 - A) + 1
= ~A + 1

1 1 1 1 1 1 1 1
 A7 A6 A5 A4 A3 A2 A1 A0

A7 A6 A5 A4 A3 A2 A1 A0

~ means bit-wise complement

Negation:
Complement
and add 1

6.111 Fall 2016 29Lecture 7

Signed integers: 2’s complement

20212223…2N-2-2N-1 ……
N bits

8-bit 2’s complement example:
11010110 = –27 + 26 + 24 + 22 + 21 = – 128 + 64 + 16 + 4 + 2 = – 42

If we use a two’s complement representation for signed integers,
the same binary addition mod 2n procedure will work for adding
positive and negative numbers (don’t need separate subtraction
rules). The same procedure will also handle unsigned numbers!

By moving the implicit location of “decimal” point, we can represent
fractions too:

1101.0110 = –23 + 22 + 20 + 2-2 + 2-3 = – 8 + 4 + 1 + 0.25 + 0.125 = – 2.625

“sign bit” “decimal” point
Range: – 2N-1 to 2N-1 – 1

6.111 Fall 2016 30Lecture 7

Sign extension

Consider the 8-bit 2’s complement representation of:

-5 = ~00000101 + 1
= 11111010 + 1
= 11111011

42 = 00101010

What is their 16-bit 2’s complement representation?

42 = ________00101010

-5 = ________11111011

42 = 0000000000101010

-5 = ________11111011

42 = 0000000000101010

-5 = 1111111111111011
Extend the MSB (aka the “sign bit”)
into the higher-order bit positions

6.111 Fall 2016 31Lecture 7

Using Signed Arithmetic in Verilog

6.111 Fall 2016 32Lecture 7

reg signed [63:0] data;
wire signed [7:0] vector;
input signed [31:0] a;
function signed [128:0] alu;

16'hC501 //an unsigned 16-bit hex value
16'shC501 //a signed 16-bit hex value

Use care with signed arithmetic!
wire signed [7:0] total;
wire [3:0] counter; // max value 15, counting widgets off the mfg line
wire signed [5:0] available;

assign total = available + counter; // does this give the correct answer?
NO! counter = 4’b1111 is treated as -1. Need to “append” a leading zero

assign total = available + {1’b0, counter}; // or use $unsigned()
assign total = available + $unsigned(counter);

Using Signed Arithmetic in Verilog

6.111 Fall 2016 33Lecture 7

“<<<“ and “>>>” tokens result in arithmetic (signed) left and
right shifts: multiple by 2 and divide by 2.

Right shifts will maintain the sign by filling in with sign bit
values during shift

wire signed [3:0] value = 4’b1000; // -8

value >> 2 // results in 0010 or 2
value >>> 2 // results in 1110 or -2

Verilog Grading
• Logistics

– Verilog submission with 2 days after lab checkoff. Lab must be
checkoff first.

– Resubmission for regrade permitted for Lab 2 and Lab 3 only (email
grader for regrading)

• Grading
– Proper use of blocking and non-blocking assignments
– Readable Code with comments and consistent indenting
– Use of default in case statement
– Use of parameter statements for symbolic name and constants

(state==5 vs state==DATA_READY)
– Parameterized modules when appropriate
– Readable logical flow, properly formatted (see “Verilog Editors”)
– No long nested if statements.
– 20% off for each occurrence.

6.111 Fall 2016 Lecture 7 34

Nexys 4 - DDR

6.111 Fall 2016 Lecture 7 35

Analog Input or digital I/O

16 Switches, 7 segment LED

PWM Audio Out

Microphone

(4) 8 User I/O

12 bit VGA

ADI
temperature
sensor

Ethernet

USB HID

5 Pushbuttoms

ADX362 3-axis accelerometer

$159 10/2016

Low Cost FPGA Boards

• Basys3
– Artix-7 FPGA
– 12 bit VGA
– Switches/LEDs
– $79 (10/2016)

– Vivado Webpack

• Basys2
– Spartan-3E
– 8 bit VGA
– Switches/LEDs
– $69 (10/2016)

– ISE

6.111 Fall 2016 Lecture 5 36

