Arithmetic Circuits & Multipliers

« Addition, subtraction

* Performance issues
-- ripple carry
-- carry bypass
-- carry skip
-- carry lookahead

« Multipliers

Reminder: Lab #3 due tonight!

6.111 Fall 2016 Lecture 8

Signed integers: 2's complement

A

N bits

\ 4

_ON-1{ ON-2 [ese | eee | eee | 23 | 22 | 21 | 20

/ Range: - 2N-1 to 2N-1-1 T
“sign bit" “decimal” point

8-bit 2's complement example:
11010110 = -27 + 26 + 24+ 22+ 21 = - 128 + 64 + 16 + 4 + 2 = - 42

If we use a two's complement representation for signed integers,
the same binary addition mod 2" procedure will work for adding
positive and negative numbers (don't need separate subtraction
rules). The same procedure will also handle unsigned numbers!

By moving the implicit location of "decimal” point, we can represent
fractions too:
1101.0110=-23+22+ 20+ 22+ 23=-8+4+1+025+0.125=- 2,625

Sign extension

Consider the 8-bit 2's complement representation of:

42 = 00101010 -5 ~00000101 + 1
11111010 + 1

11111011

What is their 16-bit 2's complement representation?

42 = 0000000000101010

-5 = 1111111111111011

g
\\J Extend the MSB (aka the “sign bit”)
into the higher-order bit positions

6.111 Fall 2016 Lecture 8

Adder: a circuit that does addition

Here’ s an example of binary addition as one might do it by “hand”:

i1 4 Carries from previous

column
Adding two N-bit 1101

numbers produces an + 0101
(N+1)-bit result — 10010

Y t
If we build a circuit that implements one column: ~ =7° FA ==
b
we can quickly build a circuit to add two 4-bit numbers...
Aa B4 A B2 A Ei1 Al BO e
I E U N N A Ripple-

i FA T o] FA T o] FA T o] FA CIi Car‘r‘y
; : : : L adder
ot} 5|3 S|E 5|1 5|EI

6.111 Fall 2016 Lecture 8

“Full Adder” building block

(]D (F A B C S CO
Fy B 0 0] 0 0 0
oro FA ci—o O 0o 1|1 o0
i O 1 0|1 o
The “half adder”
circuit has only the 0 1 1 o) 1
A and B inputs 1 0 0 1 0
AN
. S 1 0o 1|0 1
1 1 0 0 1
1 1 1 1 1

S=A®B®C

CO = ABC + ABC + ABC + ABC
= (A+ A)BC + (B+ B)AC + AB(C + C)
=BC+ AC+ AB

Subtraction: A-B = A + (-B)

Using 2’ s complement representation: -B = ~B + 1

~’= bit-wise complement

o o

So let’ s build an arithmetic unit that does both addition and
subtraction. Operation selected by contro/ input.

B3 B2 E1 =10

b

1 ? | V] V | V

A B A E A E A E

|7(:D FA c: o FA cI o FA cz o FA cI
| | | |

S 53 =2 =1 =0

Condition Codes

Besides the sum, one often wants four other
bits of information from an arithmetic unit:

Z (zero): resultis=0 big NOR gate

N (negative): result is <O Syt

C (carry): indicates an add in the most
significant position produced a carry, e.g.,
1111 + 0001 from last FA

V (overflow): indicates that the answer
has too many bits to be represented
correctly by the result width, e.g.,
0111 + 0111

VEAN-1BN-1oN-1 T AN B —ON

V=COUT,_,@CIN _,

ﬁo compare A and B,\

LT N®V

EQZ
NE ~Z

LTU
LEU
GEU
GTU

perform A-B and use
condition codes:

Signhed comparison:
LE Z+(N®V)
GE ~(N&V)
GT ~(Z+(N®V))

Unsigned comparison:

C
C+Z
~C

~(C+2) ///

6.111 Fall 2016

Condition Codes in Verilog

Z (zero): resultis=0
N (negative): result is <0

C (carry): indicates an add wire signed [31:0] a,b,s;
in the most significant ‘g;g? ﬁ’?é\/;;’_ .
position produced a carry, 9 S5 = ,

assign z = ~|s;
e.g., 1111 + 0001 assign n = s|[3l] ;

assign v = a[31]Ab[31]As[31]Ac;
V (overflow): indicates that NN
the answer has too many Might be better to use sum-of-
bits to be represented products formula for V from previous
correctly by the result slide if using LUT implementation

width, e.g., 0111 + 0111 (only 3 variables instead of 4)

Lecture 8

Modular Arithmetic

The Verilog arithmetic operators (+,-,*) all produce full-precision
results, e.g., adding two 8-bit numbers produces a 9-bit result.

In many designs one chooses a “word size” (many computers use 32
or 64 bits) and all arithmetic results are truncated to that number of
bits, i.e., arithmetic is performed modulo 2wordsize,

Using a fixed word size can lead to overf/ow, e.qg., when the operation
produces a result that’s too large to fit in the word size. One can

Avoid overflow: choose a sufficiently large word size

Detect overflow: have the hardware remember if an operation
produced an overflow - trap or check status at end

‘Embrace overflow: sometimes this is exactly what you want, e.qg.,
when doing index arithmetic for circular buffers of size 2N,
“Correct” overflow: replace result with most positive or most
negative number as appropriate, aka saturating arithmetic. Good for
digital signal processing.

Speed: tp, of Ripple-carry Adder

Co= AB+ AC; + BC;

An-1 Bn-1 An-2 Bn-2 Al B2 Al B1 Al B0
I O I N O I I
A E A E A B A B A E
c—xo FA « o FA cilo B E B SO FA o o FA c1 A c11
[| g
|
|

& & 5] 5]
M

Sn-1 Sn-2 52 51 =0
Worst-case path: carry propagation from LSB to MSB, ?(I\cli) is I:‘f-,ad
. oraer :
e.g., when adding 11...111 to0 00...001. et T an
latency of our
- x
top = (N-1)*(tpp 0r * Top and) + Teoxor = O(N) adder grows af
- - J \) worst |$.
proportion to
CI to CO CIn. To Sha the number of
bits in the
operands.

tadder (N l)t

carry SUH]

How about the tpy of this circuit?

An-1 Bn-1 An-2 Bn-2 Al B2 A Ei1 Al B|EI
] I S N D B
A B A B A B A B A B
co FA o1 o FA cd< a n n o+o FA cz o FA cz o FA cz
:, :, 3 3 :
Cn-|1 Cn|—2 C|2 C|1 C|O -
A E A E A E A E A E
ro FA e o FA ctt¢ u m » oo FA oz o FA o o FA
3 : g 3 3
| —
| | | | -
5n-1 5n-2 52 51 S0

Is the TPD Of this circuit =2 * TPD,N-BIT RIPPLE?

NOP@! TPD Of ThlS Cir'CUiT - TPD,N—BIT RIPPLE + TPD,FA “l

’/: —— Timing analysis is tricky!

L&

Alternate Adder Logic Formulation

How to Speed up the Critical (Carry) Path?
(How to Build a Fast Adder?)

A

LT

Al B || s | ¢ | S o ;Léllcller —
0| 0 0 0 0 delete |

0 0 1 1 0 delete S

0 1 0 1 0 | propagate Generate (G) = AB

0 1 1 0 1 propagate Propagate (P)=A ®B
1 0 0 1 0 propagate C (G', P) - G+ PC.
1 0 1 0 1 propagate o Z
1 1 0 0 1 generate S(G,P) = P® Cf

1 1 1 1 1 generate

Note: can alsouse P=A + B for C,

Faster carry logic

Let’ s see if we can improve the speed by rewriting the equations

for Cout:
A Cout = AB + ACyy + BCpy
ﬁj g = AB + (A + B)Cpy
CouroF° FA cie—(C =G+ P Cqpy
% gene/r'va’re propagate

S

module fa(input a,b,cin, output s,cout);
wire g = a & b;
wire p = a A b;
assign s = p A cin;
assign cout = g | (p & cin);
endmodule

where G = AB
P-A+B

/Ac’rually, Pis usually\
definedas P = A"B
which won’ t change
Cout but will allow us
to express Sasa
simple function :

_ S=PCy)

6.111 Fall 2016

Virtex IT Adder Implementation

SOPIN

WG
WiE3
WiE2
Wit

ALTDIG

BY

Cout

SHETIN LUT A@B cout

SLICEWE[2:0]

CE

CLK

=1

\ 0) [—> SOPOUT
O Cual-Fort YEMLUX
O Shift-Reg —=YE
Y
g q OLUT
Az CJRAM
OROM .
Al b Y=A®B ® Cin
 —-2 W4 -
= waa 9 -
= WG2 oy YORG <1 DY
| — WG OFF
ws_ DOl OLATCH
 — é
MUX D ol—r—sq
¥
GE— GE
CLK— CK
SR REV
WG SHIFTOUT \ SR
WE[2:0] —>DIG
WE \
— CLK
WSF

Shared between
* & v Registers

g |

Lecture 8

Dedicated adder logic

1 half-Slice = 1-bit adder

CE0E1_01_080s

14

(First Carry Chain)

Virtex IT Carry Chain

l—/gll\ MUXCY
| y FF
D=t

—

Fﬁ%

MLXCY
5 FF
.»—J

LuT

[P A—

b cin

CouT

l_ﬁLl\ MUXCY
3 FF
<._J

)

SLICE 51

MLIKCY SLICE 50
5 FF
-—J

1—,’6“_\‘\ MUXCY

p—

l—/o—r—,\ MUXCY
\

FF
s

SLICE
FF
.

LuT !
Pa——
4 cn
couT
Pro—':-\muxov
y FF
Lot []
!
|
1_,/O_L\muxc\.f
D iFF
LuT !
!
P—

SLICE 52

{Second Carry Chain)

A[63:0]

B[63:0]

1 CLB = 4 Slices = 2, 4-bit adders
/ 64-bit Adder: 16 CLBs

+ — Y[63:0]

A[63:60] —»
B[63:60]—>

—> Y[63:60]

Al7:4] —
B[7:4] —>

CLB1

—> Y[7:4]

A

A[3:0] —>

B[3:0] =

CLBO

—> Y[3:0]

CLBs must be in same column

Ao B

b

PG

PO,,

v G;O

Carry Bypass Adder

A B

|

PG

Pl \4

v é;l

C/S

+C/S

I

PG

I

—>

C:oJ

A, B,

|

PG

As Bs

b

PZ,,

A 4 6;2

PG

«_ Can compute P, 6

C/S

P3wr

v 6;3

I

C/S

——>

<:03

I

PG

A 4 6;1

C/S

in parallel for all bits

BP= P,P,P,P.

6.111 Fall 2016

Key Idea: if (Po Py P, P3) then C 5 = C;g

Lectur

e 8

16

16-bit Carry Bypass Adder

BP= P,P,P,P,

BP= P,PP,P,

BP= PgP4P4P11

PG| [PG| PG| |PG pG| [PG| PG| [PG pcl| lec| |rcl| |rG
N T N T = T N 2 A G i X
TC/STC/S—:C/STC/Q O\ PSRRI reisc/s c/st sl

Co,o Co,l Co,z > 1 C0,4 CU,S Co,6 »|1 Co,S Coyg Co,lo 1

6.111 Fall 2016

BP=P1,P13P14P15

P.G

P.G P.G

P.G

vy

YVY VvV

vV

CIS

C/SkIC/S

Iy

C/S

|0

What is the worst case propagation delay
for the 16-bit adder?

Assume the following for delay each gate:
P, G from A, B: 1 delay unit
P, G, C, to C, or Sum for a C/S: 1 delay unit
2:1 mux delay: 1 delay unit

Lecture 8

0,12 C0,13 C0,14 »|1 T

C0,15

17

Critical Path Analysis

BP3= PgPgP 40P BP4=P,P13P1,P1s

I BP= P,P,P,P, BP2= P,P.P.P,
P P P.,G G P.G P.G P,G P,.G P,G P,G P,G P,G
Coo vy *t *‘* Cos vV YY VvV C11*+ YY VYV V¥V
I T S s o - NN C/bide b S(<hb
Coo Coy Cop 1 0.0 Co10 > Cor» Cors Cyil 1 f
Co,15

For the second stage, is the critical path:

BP2=0 or BP2=17?

Message: Timing analysis is very tricky -
Must carefully consider data dependencies for false paths

18

Lecture 8

6.111 Fall 2016

Carry Bypass vs Ripple Carry

Rlpple CGI"I"Y: Tadder' = (N'l) Tcar'r'y + Tsum
Carry Bypass: tqger = 2(M-1) T gppy + Toym + (N/M-1) 1,00

4>.m

Tadder'

M = bypass
word size

ripple adder

N = number
of bits being
added

bypass adder

Zy

6.111 Fall 2016 Lecture 8

Carry Lookahead Adder (CLA)

* Recall that Cout =G +P Cry where 6 = A&B and P = A"B
* For adding two N-bit numbers:

Cn = Gn + PuiaCaa
= 6N+ PuaGnz + P P2l

= 6N+ P B + P PaeOns * o+ P PoCry

N—

—_—

Cy inonly 3 gate delays™ :
1 for P/G generation, 1 for ANDs, 1 for final OR

*assuming gates with N inputs

* Idea: pre-compute all carry bits as f(6s,Ps,Cy\)

6.111 Fall 2016 Lecture 8

20

Carry Lookahead Circuits

S

e

)~

The 74182 Carry Lookahead Unit

Gs, Pyo Ur4 Giig 5.0
3:U - 4 PT P 8 P 5:12
74182 carry Sunt L ™ L 18 yame iad
lookahead unit . =
4 '
*
_ L t
=11 16 b= Vec . 1

Pi=gz 182 15k=F; ! ! Tt

o 1l \/

e B 12 =Crax

P;—16 111=Cray

GND—{ 8 9 =Cpy, . Cpryt— Cy f gl : p
Cy Active low example:
Cn-ix: G_O_OJF_()E]

= high speed carry lookahead - EoTnonE
generator = (GO+PO)- GI(])+C = G0+ POC
= used with 74181 to extend carry - (A W = "
lookahead beyond 4 bits s ™ Bna ¥ S50
= correctly handles the carry polarity Coiy = Cg =Ggy + PyyGay+ PyyP3Cig= Gy + PG,
Of the 181 Cm-z - CI?. - GII:éar + Pl I:SGT:-—I T PII:KP?:—IGJ:[J T PII:8P7:4P3:(lCn

= (ill:ii 2 l-)I I:H(‘n

6.111 Fall 2016 Lecture 8 22

Block Generate and Propagate

G and P can be computed for groups of bits (instead of just for
individual bits). This allows us to choose the maximum fan-in we
want for our logic gates and then build a hierarchical carry
chain using these equations:

- “generate a carry from bits I thru
CJ+1 GIJ' * PIJCI / K'if it is generated in the high-order
GIK - GJ+1 K+ P J+1,K GIJ g(gr:elrilggg r:\ ?r;cxeT }l‘:wtj!:orcdkegr(iff ;r ||osar"r
: ' of the block and then propagated
PIK = PIJ PJ+1,|< thru the high part”
where I <J and J+1< K
P a b a, b,
w1, K +1, k
J.* ilh ?Il ll
. ¢ P/G generation | 1 54
A)
- P} ;
| . ’
Y 9! I 9! |n,
Pix 1st level of 2
G, lookahead
: . o G 1 tp
Hierarchical building block 0. 0.

6.111 Fall 2016 Lecture 8 23

8-bit CLA (P/G generation)

a, b, a, b, a, b,
|] || | |
i T 35
- ¥ 3
1.3 1 4
Lo
ol [e 9] [p
2 2 2 2
Gs.2] 1Pz G, 5| [Pis Gl 1P, Goil 1P
LOQZ(N) 2 2
G, ;1 1P Gy.a|
A 4 2
Go.7+ *Poav

From Hennessy & Patterson, Appena’/i\/ A

6.111 Fall 2016 Lecture 8

Log,(N)

6.111 Fall 2016

8-bit CLA (carry generation)

¢, Cs Cy cfa
Sy
9s 9, 9,
| C €, L 2
Py s Po.1
G, 5 G,
LG, LS
Pos
GO. 3
2
Lecture 8

C: co
|
9,
llco
c. =G +P..¢c, ¢

25

8-bit CLA (complete)

s, s, s,

[37 b, Ia, b, a, bo
bid i et gl
.9.‘] &

A A A A A A A A qe

- ",J.
' .Ikc«—| V | P Al CS_J Kl LA Al 4“J—| 1 4c, ' ;c,—' | A¢,
B B &) B
A oA A 7 A ¥, i L C,
B 3

p{:{)n—bl B8 ,......P:'
3 g;=a| bt ——cf

0 —ay
O b
-6 ——f
——
e
J——

b

6.111 Fall 2016 Lecture 8 26

Unsigned Multiplication

A; A AL A

AB, called a “partial product” —— A3zBg A,By AiBo AoBo
AsB; A,B; AB; AgB;
A3BZ AZBZ A1Bz AOBZ
+ AsB; AB; AB; AgB;

N _
—

Multiplying N-bit number by M-bit number gives (N+M)-bit result

Easy part: forming partial products
(just an AND gate since B;is either O or 1)
Hard part: adding M N-bit partial products

6.111 Fall 2016 Lecture 8

27

Combinational Multiplier (unsigned)

X3 X2 X1 X0 <—— multiplicand
* Y3 Y2 YL YO «— multiplier

X3Y0 X2Y0 X1YO XOYO | Partial products, one for each bit in

* X3Y1 X2Y1 X1Y1l XOY1 multiplier (each bit needs just one
+ X3Y2 X2Y2 X1Y2 XO0Y2 AND 9(11'6)
+ X3Y3 X2Y3 X1Y3 XO0Y3

___ X3 X2
Z7 Z6 Z5 Z4 Z3 Z2 Z1 d é
&

z7 z6 z5 z4 73

6.111 Fall 2016 Lecture 8 28

Combinational Multiplier (signed!)

X3
Y3

X2
Y2

X1
Y1

X0
YO

X3Y0 X3YO X3YO X3YO X3YO X2YO0 X1YO XOYO
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1l XOY1
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
- X3Y3 X3Y3 X2Y3 X1Y3 XO0Y3

N bits >i

_2N-1

2MN-2

23 | 22 | 2t | 20

7

"sign bit"

Range: - 2N 1o 2MN1-1 T

“decimal” point

77 76 75 z4 73 72 71 70 % ’% % %
X3 X2 x1 x0 yl
z0
v \ 4
FA FA FA FA [« FA |« HA
X3 XZ| x1 X0 y2 ¢
i s 6 8 !
FA +— FA FA FA FA HA
X3 X2 X1 AR
i& i& |i$ z2
\ 4 \ 4
A k—1 Fa FA A 1 NB: There are tricks we
can use to eliminate the
Zl? Z¢6 is i4 ¢3 extra circuritry we
Y4

6.111 Fall 2016

Lecture 8

added..

29

2's Complement Multiplication

(Baugh-Wooley)

Step 1: fwo's complement operands so high
order bit is -2N-1. Must sign extend partial
products and subtract the last one

X3 X2 X1 X0
* Y3 Y2 Y1 YO

X3Y0 X3YO X3YO X3YO X3YO X2Y0 X1YO XOYO
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1l XO0Y1l
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
- X3Y3 X3Y3 X2Y3 X1Y3 XO0Y3

Step 2: don't want all those extra additions, so
add a carefully chosen constant, remembering
to subtract it at the end. Convert subtraction
into add of (complement + 1).

X3Y0 X3YO X3YO X3YO X3YO0 X2Y0 X1YO XOYO

+ 1

+ X3Y1 X3Y1 X3Y1 X3Y1l X2Y1 X1Y1l XO0Y1l

+ 1

+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2

+ 1

+ X3Y3 X3Y3 X2Y3 X1Y3 XO0Y3 -B=~B +1
+ 1

+ 1

1 1 1 1

6.111 Fall 2016

Lecture 8

Step 3: add the ones to the partial
products and propagate the carries. All
the sign extension bits go away!

__ X3Y0 X2Y0 X1YO XOYO
_ X3Y1 X2Y1 X1Y1l X0Y1
X2Y2 X1Y2 X0Y2 X0Y2
X3Y3 X2Y3 X1Y3 X0Y3
1
- 1 1 1 1

+ 4+ + +

Step 4: finish computing the constants...

___ X3YD X2Y0 X1YO XOYO
__ X3Y1 X2Y1 X1Y1 X0Y1
X2Y2 X1Y2 X0Y2 XO0Y2
X3Y3 X2Y3 X1Y3 XO0Y3
1 1

+ + + +

Result: multiplying 2's complement operands
takes just about same amount of hardware as
multiplying unsigned operands!

30

Baugh Wooley Formulation -The Math

no insight required
Assuming X and Y are 4-bit twos complement numbers:

The product of Xand Y is:
XY = X3y,2° - i X;y32M3 - Z - X3 23+ 55 ny2'+J

i=0 j=0

For twos complement the following is true:
-Zx2' =-24+Zx2' —+ 1

The product then becomes
XY = x3y,20 + Z Xiya2!t3 + 23 - 26 + Z-x—y 2i*3 423 _ 26455 Xy 21

i=0 j=0

= X3Y32° + Z“Ky 213 + ZTy 2J+3 +3 3 Xy;2™" +24 =27

i=0 j=0

= — 27+ X3y32° + (XoY3 + X3Y5)2° + (X1Y3 + X3y + Xo¥, +1)2¢
+ (XoY3 + X3Yo + XqYo + X5¥1)23 + (XoYa + XqYq + XoY()22

+ (Xo¥1 + X1Y0)21 +(XoY()2°

+
+
+
+

6.111 Fall 2016

2's Complement Multiplication

X3Y0 X2YO X1YO XOYO

X3Y1 X2Y1 X1Y1 XOY1l

X2Y2 X1Y2 X0Y2 X0Y2

X3Y3 X2Y3 X1Y3 X0Y3

1

7

)&
A 4

HA

)%
v

FA
® |
FA FA
| |
Zg Zg

Lecture 8

;

Z,

X Yo
Y1
Zy

32

Multiplication in Verilog

You can use the "*" operator to multiply two numbers:

wire [9:0] a,b;
wire [19:0] result = a*b; // unsigned multiplicationl

If you want Verilog to treat your operands as signed two's
complement numbers, add the keyword signed to your wire or
reg declaration:

wire signed [9:0] a,b;
wire signed [19:0] result = a*b; // signed multiplication!

Remember: unlike addition and subtraction, you need different
circuitry if your multiplication operands are signed vs. unsigned.
Same is true of the >>> (arithmetic right shift) operator. To get
signed operations all operands must be signed.

To make a signed constant: 10'sh37C

Multiplication on the FPGA

Hardware multiplier block: two 18-bit twos complement (signed) operands

Multiplier Block

A[17:0] ———

MULT 18 x 18 e P[35:0]

B[17:0] ——

tpp ® 10ns

In the XC2V6000: 6 columns of mults, 24 in each column = 144 mults

Multiplier Blocks -

S P~ N

5 3 3 515 E 3 5
([l @ 2 || |IB]3] || 2 1[]|8
m m m m
o« - o o - 3 o
O &) o Q|0 o & O
o c = od |N = | = ol
Lecture 8

6.111 Fall 2016

Sequential Multiplier

Assume the multiplicand (A) has N bits and the
multiplier (B) has M bits. If we only want to invest ina
single N-bit adder, we can build a sequential circuit
that processes a single partial product at a time and
then cycle the circuit M times:

Init: PO, load A and B

Sy1-+-So LSB
P B v A Repeat M times {
M bits | P« P+ (Bg==17?A - 0)
LN + It el shift P/B right one bit
XN
AN }

~NN+1

Done: (N+M)-bit result in P/B

Bit-Serial Multiplication

U

Init: P = 0; Load A,B

Repeat M times {
Repeat N times {

shift A,P:
Amsb = Alsb
Pmsb =

PIsb + Alsb*BlIsb + C/0
s

shift P,B: Pmsb = C, Bmsb = Plsb
s

(N+M)-bit result in P/B

X3Y3 X2Y3 X1Y3 XO0Y3

» Propagation delay ~2N

Combinational Multiplier (unsigned)

Partial products, one for each bit in
multiplier (each bit needs just one

¥

z

®
A 4

X3 X2 X1 X0 «<— multiplicand
* Y3 Y2 Y1 YO «— multiplier
X3Y0 X2Y0 X1YO XOYO
X3Y1 X2Y1 X1Y1l XO0Y1
X3Y2 X2Y2 X1Y2 X0Y2 AND 901‘6)
___ x3 X2
Z4 Z3 Z2 Z1 Z0 é é
® o |®
\ 4
HA FA [* FA |«
v \ 4 é
FA FA FA HA |«
X3 XZ] X1 xor Y3]
5 & & |® | -
A 4 \ 4 \4
FA FA FA HA [«
v v v v
z6 z5 z4 73

6.111 Fall 2016

Lecture 8

HA

v

z1

x0
yl

z0

37

Useful building block: Carry-Save Adder

T% T% T%:

t LR LR LR
LTE

Good for pipelining: delay
through each partial product
(except the last) is just =

Tep,aND * Tp Fa-
No carry propagation time!

T O

i
-

T
|
T
|
1T
k-
1T
b

J—FA—J—FA—J—FA—J—FA—
CSA

’j“_FLAILA__F iy

=1 FA FA FA FA 1

"

| | | |
I 1 i] I

Last stage is still a carry-propagate adder (CPA)

6.111 Fall 2016 Lecture 8

Wallace Tree Multiplier

This is called a 3:2 l l l l l l

Ll

counter by multiplier CSA : CSA

CSA

hackers: counts
number of 1's on the

3 inputs, outputs 2-
bit result. CSA

Wallace Tree:
Combine groups of
three bits at a time

O(log, sM)

Higher fan-in adders can be used

to further reduce delays for large
M.

4:2 compressors and 5:3
counters are popular
building blocks.

6.111 Fall 2016 Lecture 8

39

6.111 Fall 2016

Wallace Tree *
Four Bit Multiplier

X3y XV Xa¥p Xpyva Xp XYy XYo XpY)
Partial products ¥y Py {I 3 rﬂ’s ¥i|¥a¥2 Yo | *oYo
First stage HA
¥y O/:P{/'l) v/ 1 v

Second stage FA

--------- , »#{-5,2- -o-x-l-} =TTk
Final adder \9_________________________________9_____/'

7 % s 4]) 29

Figure 11-35 Wallace tree for four-bit multiplier.

*Digital Integrated Circuits
J Rabaey, A Chandrakasan, B Nikolic

Lecture 8

40

Multiplication by a constant

* If one of the operands is a constant, make it the multiplier (B in
the earlier examples). For each "1" bit in the constant we get a
partial product (PP) - may be noticeably fewer PPs than in the
general case.

— For example, in general multiplying two 4-bit operands generates
four PPs (3 rows of full adders). If the multiplier is say, 12

(4'b1100), then there are only two PPs: 8*A+4*A (only 1 row of full
adders).

— But lots of "1"s means lots of PPs... can we improve on this?

« If we allow ourselves to subtract PPs as well as adding them (the
hardware cost is virtually the same), we can re-encode
arbitrarily long contiguous runs of "1" bits in the multiplier to
produce just two PPs.

..011110.. = ..100000.. - ..000010.. = ..0100010..

where 1 indicates subtracting a PP instead of adding it. Thus we've re-
encoded the multiplier using 1,0,-1 digits - aka canonical signed digit -
greatly reducing the number of additions required.

Booth Recoding: Higher-radix mult.

Idea: If we could use, say, 2 bits of the multiplier in generating each
partial product we would halve the number of columns and halve the

latency of the multiplier!
AN-1 AN-Z A4 A3 AZ Al AO

x BM_I BM_Z oo B3 BZ Bl BO
== g
M/2 2
@000
A \
Br.i (A = 0* /O
Booth's insight: rewrite 1A - 1*2 : A
2*A and 3*A cases, leave~— = 2*A 5 4A-2A
4A for next partial =3*A—>4A- A

product to do!

6.111 Fall 2016 Lecture 8

6.111 Fall 2016

Booth recoding

On-the-fly canonical signed digit encoding

current bit pair Vi bi i
N /from previous bit pair
Bv.i By By | action
O O O add O
O 0 1 add A
O 1 O add A
O 1 1 |add?2*A
1 O O |sub?2*A
1 0] 1 SUb A — _2*A+A
1 1 O sub A
1 1 IT add O — -A+A

A "1" in this bit means the previous stage
needed to add 4*A. Since this stage is shifted
by 2 bits with respect to the previous stage,
adding 4*A in the previous stage is like adding
A in this stage!

Lecture 8

43

Summary

* Performance of arithmetic blocks dictate the
performance of a digital system

 Architectural and logic transformations can enable
significant speed up (e.g., adder delay from ON)

to Alog,(N))

« Similar concepts and formulation can be applied at
the system level

» Timing analysis is tricky: watch out for false paths!

* Area-Delay trade-offs (serial vs. parallel
implementations)

Lab 4 Car Alarm - Design Approach

* Read lab/specifications carefully, use reasonable
Intferpretation

 Use modular design - don't put everything into labkit.v
* Design the FSM!
— Define the inputs
— Define the outputs
— Transition rules
* Logical modules:
— fsm.v
— timer.v // the hardest module!l
— siren.v
— fuel_pump.v
* Run simulation on each module!
* Use hex display: show state and time

* Use logic analyzer in Vivado

6.111 Fall 2016

Car Alarm - Inputs &
Outputs

Inputs: o

* passenger door swit

« driver door switch C\
* ignition switch —
* hidden switch

* brake pedal switch \

Outputs:

« fuel pump power
« status indicator

* siren

Figure 1: System diagram showing sensors (inputs) and actuators (outputs)

Lecture 8

46

Car Alarm - CMOS Implementation

 Design Specs
— Operating voltage 8-18VDC
— Operating temp: -40C +65C
— Afttitude: sea level
— Shock/Vibration

* Notes

— Protected against 24V power
surges

— CMOS implementation

— CMOS inputs protected against
200V noise spikes

— On state DC current <10ma

— Include T_PASSENGER_DELAY
and Fuel Pump Disable

— System disabled (cloaked) when
being serviced.

6.111 Fall 2016 Lecture 8 47

Debugging Hints - Lab 4

* Implement a warp speed debug mode for the one hz clock.
This will allow for viewing signals on the logic analyzer or
Modelsim without waiting for 27/25 million clock cycles.
Avoids recomplilations.

assign warp_speed = sw[6];
always @ (posedge clk) begin
if (count == (warp_speed ? 3 : 26_999_999)) count <= 0;
else count <= count +1;
end

assign one_hz = (count == (warp_speed ? 3 : 26_999_999)) ;

One Hz Ticks in Modelsim

To create a one hz tick, use the following in the Verilog test fixture:

M wave - default

BEX
File Edit Wiew Insert Format Tools indow

always #5 clk=!clk;

always begin
#5 tick = 1;
#10 tick = 0;
#15;

end

o

Y
|

initial begin
// Initialize Inputs
clk = 0;
tick=0; ...

72849 ps to 218549 ps | Mow: 1 us Delta: 2

6.111 Fall 2013 Lecture 8

For Loops, Repeat Loops
in Simulation

integer i; // index must be declared as integer
integer irepeat;

// this will just wait 10ns, repeated 32x.
// simulation only! Cannot implement #10 in hardware!
irepeat =0;
repeat(32) begin
#10:;
irepeat = irepeat + 1;
end

// this will wait #10ns before incrementing the for loop
for (i=0; i<16; i=i+1) begin
#10; // wait #10 before increment.
// @(posedge clk);
// add to index on posedge
end

// other loops: forever, while

6.111 Fall 2013 Lecture 8

50

Edge Detection

wave - default

File Edit View Add Format Tools Window

0-3@B2& | B> AT %| &B i

[3-393|hus B> @]aqaal LEIWI S

Messages

fpulse_shift_th/reset
fpulse_shift_tb/clk

/pulse_shift_th/signal
/pulse_shift_tb/uutfsignal_delayed
/pulse_shift_tb/rising_edge
/pulse_shift_tb/falling_edge

reg signal_delayed,;

always @(posedge clk)
signal_delayed <= signal;

assign rising_edge = signal && !signal_delayed;
assign falling_edge = Isignal && signal_delayed;

6.111 Fall 2013 Lecture 8

51

Student Comments

"All very reasonable except for lab 4, Car Alarm. Total pain in the
ass. "

“The labs were incredibly useful, interesting, and helpful for
learning. Lab 4 (car alarm) is long and difficult, but overall the
labs are not unreasonable.”

