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Sequential Divider

Assume the Dividend (A) and the divisor (B) have N bits. If we
only want to invest in a single N-bit adder, we can build a
sequential circuit that processes a single subtraction at a time
and then cycle the circuit N times. This circuit works on unsigned
operands; for signed operands one can remember the signs, make
operands positive, then correct sign of result.

Init: P<0O, load A and B
Repeat N times {

L3 shift P/A left one bit
A I-—S |0| B | temp = P-B
o if (temp > 0)
Nl {P—temp, A g1}

else A <0

N+1 }
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Done: Q in A, R in P

Lecture 9

Verilog divider.v

// The divider module divides one number by another. It
// produces a signal named "ready" when the quotient output
// is ready, and takes a signal named "start” to indicate

// the the input dividend and divider is ready.

// sign -- 0 for unsigned, 1 for twos complement

// It uses a simple restoring divide algorithm.
// http:/ /en.wikipedia.org/wiki/ Division_(digital)#Restoring_division

module divider #(parameter WIDTH = 8)
(input clk, sign, start,
input [WIDTH-1:0] dividend,
input [WIDTH-1:0] divider,
output reg [WIDTH-1:0] quotient,
output [WIDTH-1:0] remainder;
output ready);

reg [WIDTH-1:0] quotient_temp;
reg [WIDTH*2-1:0] dividend_copy, divider_copy, diff;

reg negative_output;

wire [WIDTH-1:0] remainder = (Inegative_output) ?

dividend_copy[WIDTH-1:0] : ~dividend_copy[WIDTH-1:0] + 1'b1;

reg [5:0] bit;
reg del_ready = 1;
wire ready = (Ibit) & ~del_ready;

wire [WIDTH-2:0] zeros = 0;
initial bit =
initial negative_output = 0;
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always
del_ready <=
if( start ) begin

posedge clk ) begin
.

bit = WIDTH;
quotient = 0;
quotient_temp = 0;
dividend_copy = (!sign | | !dividend[WIDTH-1]) ?
{1'b0,zeros,dividend} :
{1'b0,zeros,~dividend + 1'b1};
divider_copy = (Isign | | !divider[WIDTH-1]) ?
{1'b0,divider,zeros} :
{1'b0,~divider + 1'b1,zeros};

negative_output = sign &&

((divider[WIDTH-1] && !dividend[WIDTH-1])

| | (divider[WIDTH-1] && dividend[WIDTH-1));

end
else if ( bit > 0) begin
diff = dividend_copy - divider_copy;
quotient_temp = quotient_temp << 1;
if( IdiffWIDTH*2-1] ) begin
dividend_copy = diff:
quotient_temp|[0] = 1'd1;
end
quotient = (Inegative_output) ?
quotient_temp :
~quotient_temp + 1'b1;
divider_copy = divider_copy >> 1;
bit = bit - 1'b1;
end
end
endmodule

L. Williams MIT '13
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Math Functions in Coregen
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Coregen Divider

T Divider Generator v1.0 ‘

DPE Divider Generator v1.0

Companent Name | divider_sxample

Algarithm Selection

DMDEND[31:0] [B1:0]0UATIENT

Pleass select one of the following algorthm types for use with this implementalion

Algorithm Type: | Fixed ]

Dptional Pins
[] ACLR
[] SELR
O cE
SCLR/CE Priorty
SCLR overides CE

not necessary many

applications
RFD CE overides SCLR

=
o

Details in data sheet.

4/ Page 1 0f2 cpack | [ Hew> 3 Bneh ] [ Cencel
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Coregen Divider

I Divider Generator v1.0

CLK

Clacks per Division : |1 ||

Dperand Sign
@ Unsigned

() Signed (2's complement]

Remaindsr Options
RFD Remainder Type: | Fiemainder

Fractional Width: 16

Ready For Data: needed
if clocks/divide >1

Wiew Data Sheet

mgjc'?ﬁkl Divider Generator v1.0
Fised Implementation Dptions
Bus Widths
DRDEND[ET0] [E10]QUATIENT .
Dividend Width : 18 Range: 2..32
DIMSORE10] [R10]REMAINDER
Divisar Width : 18 Range: 2..32
Divider Type

=

Chose minimium
number for application

=l

FRange: 2.32
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Performance Metrics for Circuits

Circuit Latency (L): time between arrival of new input and generation

of corresponding output.

For combinational circuits this is just tpp.

Circuit Throughput (T): Rate at which new outputs appear.

For combinational circuits this is just 1/t or 1/L.
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Coregen Divider Latency
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quat adh T edud
romd 0 W J_emmd
latoncy H

Flgure 2 Latency Example (Clocks per Divigion = 4)

Table 4 Latency of Fixed-point Solution

Based on Divider Parameters

Slgned Fractional ClkeDiv Latency w
False False 1 M+2
Falkse Falsa =1 M+3
False Trua 1 MsF+2
False T =1 M+F+3
True Falsa 1 Ma+d
True Falsa =1 M+5
True Trua 1 MaF4d
True True =1 M+F45

Nete: M=dvidend widih, F=fractional remainder width,

The divelk_sel parameter allows a range of cholees of throughput versus area. With divelk_sel = 1, the
core §s fully pipelined, so it will have maximal throughput of one division per clock cycle, but will

occupy the most area. The divelk_sel select

factors for smaller core sizes.
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tons of 2, 4 and 8 reduce the throughput by those respective

Lecture 9

Latency dependent on
dividend width +
fractioanl reminder width




Performance of Combinational Circuits

For combinational logic:
L = Tpp,
T= 1/TPD.

We can't get the answer faster,
but are we making effective use
of our hardware at all times?

X 2
FOX) X0 2
G(X) XXX 2
P(X) XROOHONRKONNC—2

H_a

F & G are “idle", just holding their outputs
stable while H performs its computation
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Retiming: A very useful transform

Retiming is the action of moving registers around in the system
= Registers have to be moved from ALL inputs to ALL outputs or vice versa

—E 1 —

Cutset retiming: A cutset intersects the edges, such that this would result in two disjoint
partitions of the edges being cut. To retime, delays are moved from the ingoing to the
outgoing edges or vice versa.

Benefits of retiming:
» Modify critical path delay

. | - | g
« Reduce total number of registers \ ')
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Retiming Combinational Circuits
aka "Pipelining”

157

X o P(X) q X;

20

Assuming ideal registers: toc =25

L ) 45 i.e., pr = O/ ‘rSETUP =0 L = Z*TCLK = 50
T=1/45 T2 tax= 1729
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Pipeline diagrams

wo Clock cycle

i i+1 i+2 i+3

“ Input X; Xin Xz | Xz

&

S

§ F Reg F(X,) F(Xi*l) F(xi+2)
?’L G Reg 6(X) | 6(X.) | 6(Xi.2)
2

H Reg H(X) | H(X.) [H(Xi.2)

The results associated with a particular set of input
data moves diagonally through the diagram, progressing
through one pipeline stage each clock cycle.
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Pipeline Conventions

DEFINITION:
a K-Stage Pipeline ("K-pipeline") is an acyclic circuit having exactly K
registers on every path from an input to an output.

a COMBINATIONAL CIRCUIT is thus an O-stage pipeline.

CONVENTION:
Every pipeline stage, hence every K-Stage pipeline, has a register on its
OUTPUT (not on its input).

ALWAYS:
The CLOCK common to all registers must have a period sufficient to
cover propagation over combinational paths PLUS (input) register tpp
PLUS (output) register tszryp.

The LATENCY of a K-pipeline is K times the period of
the clock common to all registers.

The THROUGHPUT of a K-pipeline is the frequency of
the clock.
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Tll-formed pipelines

Consider a BAD job of pipelining:
)

—— ’
X ~ & c L 2
)
B —
For what value of K is the following circuit a K-Pipeline? none

Problem:

Successive inputs get mixed e.g., B(A(X..1), ;). This
happened because some paths from inputs to outputs
have 2 registers, and some have only 1!

This CAN'T HAPPEN on a well-formed K pipeline!
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A pipelining methodology

STRATEGY:

Focus your attention on
placing pipelining registers
around the slowest circuit
elements (BOTTLENECKS).

Step 1:
Add a register on each output.

Step 2:

Add another register on each
output. Draw a cut-set contour
that includes all the new
registers and some part of the
circuit. Retime by moving regs
from all outputs to all inputs of

- o

e
1
|
— A B G S
—4nS 3nS 8 nS \
1 I 1
F

cut-set. D 1
4 nS 5nS T
1 1
. L. . 1
Repeat until satisfied with T. \LE |
\ [2nS |
7z -
T=1/8ns hRS ot

R
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Pipeline Example

2 3 1
v a H—F— .
L {sJk
2»3
B
1

OBSERVATIONS:

+ 1-pipeline improves
neither L or T.

* T improved by breaking
long combinational paths,

y
allowing faster clock.

+ Too many stages cost L,
don’t improve T.

LATENCY | THROUGHPUT
O-pine: + Back-to-back registers
-pipe: 4 1/4 are often required to
Toie: keep pipeline well-
-pipe: 4 1/4 formed.
2-pipe: 4 1/2
3-pipe: 6 1/2
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Pipeline Example - Verilog

el Lab 3 Pong
pixe * 6 = game logic 8ns tpd
X J6 | — 4 C|— + C = draw round puck, use
8 y 9 multiply with 9ns tpd
hcount, intermediate - System clock 65mhz =
vcount, wires 15ns period - opps
etfc
No pipeline reg [N:0] x,y;

assign y = G(X); // logic for y =) re 23-0 ixel
assign pixel = C(y) 7/ logic for pixel al\?va)I;s @ 1 pbegin

y=6(x);
pixel = C(y);
end
X C . Ppixel
9
clock clock
Pipeline Latency = 2 clock cyles!

always @(posedge clock) begin Implications?

// pipeline y
// pipeline pixel

y2 <= 6(0);
pixel <= C(y2)

Increasing Thr'oughpu'r Pupelmmg

Idea: split processing across

several clock cycles by dividing
circuit into pipeline stages

separated by registers that hold
values passing from one stage to
the next.

end Throughput = 1/4tp, ¢, instead of 1/8tpp £4)
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How about tpy = 1/2tp5 £a? Timing Reports
Xilinx - 1SE - fafsfathenamit.edu/useniyfgim Tall2012Asb)_alphaflab)_alphaise - [Synthesis Report]
65mhz = 27mhz*2.4
+ = register
Synthesi ek i
r'ey|::‘or"reSIS Multiple: 7.251ns
Total Propagation
delay: 34.8ns |
O ] J| =
= = s
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History of Computational Fabrics

m Discrete devices: relays, transistors (1940s-50s)
m Discrete logic gates (1950s-60s)
m Integrated circuits (1960s-70s)
O e.g. TTL packages: Data Book for 100’s of different parts
m  Gate Arrays (IBM 1970s)

O Transistors are pre-placed on the chip & Place and Route software
puts the chip together automatically — only program the interconnect
(mask programming)

m  Software Based Schemes (1970’s- present)
O Run instructions on a general purpose core
m Programmable Logic (1980’s to present)

O A chip that be reprogrammed after it has been fabricated

O Examples: PALs, EPROM, EEPROM, PLDs, FPGAs

o Excellent support for mapping from Verilog

m  ASIC Design (1980’s to present)
o Turn Verilog directly into layout using a library of standard cells
o Effective for high-volume and efficient use of silicon area

6.111 Fall 2016 Lecture 9
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Reconfigurable Logic

* Logic blocks

— To implement combinational
and sequential logic

e Interconnect

— Wires to connect inputs and
outputs to logic blocks

e TI/O blocks
— Special logic blocks at

periphery of device for
external connections

* Key questions:

— How to make logic blocks programmable?
(after chip hasgbeen fabbed!?

— What should the logic granularity be?

— How to make the wires programmable?
(after chip has been fabbed!)

— Specialized wiring structures for local
vs. long distance routes?

— How many wires per logic block?

Configuration

6.111 Fall 2016 Lecture 9
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Programmable Array Logic (PAL)

* Based on the fact that any combinational logic can be
realized as a sum-of-products

* PALs feature an array of AND-OR gates with programmable
interconnect

input

signals OR array

output
signals

programming of
product terms

6.111 Fall 2016 Lecture 9

programming of
sum terms
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RAM Based Field Programmable
Logic - Xilinx

S lIERN SRR
% ﬂj}ﬂi}ﬂj}ﬂj}ﬂj}ﬂj}i}%
W 1 IF 17 1F F 17 5
rhiingl SEEESESEL
Programmable T+ T 1/6 Blocke (TOBs
Interconnect %ﬁﬁﬁﬁﬁﬁﬁﬁ% /0 Blocks (IOBs)
o ~ I Ty
o %ﬁﬁﬁﬁﬁﬁﬁﬁg
W [ o o o o o

Configurable
Logic Blocks (CLBs)

d
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LUT Mapping

* N-LUT direct implementation of a truth table: any function
of n-inputs.
* N-LUT requires 2N storage elements (latches)

Configuring the CLB as a RAM

4

e I I I |

0y Dg EC

Memory is built using Latches not FFs

Eﬁ[]

* N-inputs select one latch location (like a memory) — / —]
Inputs DECODER ; R &
Gyrer Gy ; B T — —
jaten l jﬂ = —
ENABLE|
L e ol
latch >16x2
(] \
16 [latch 1Bx11 , output = o =
mux —_— —
wRITE  |—— 1eLatcH F——
DECODER [— ARRAY [— ML F
FreerFg 4 s s = —
LF;L%TE — =
K
(CLOCK) 1 )—-—I READ
Latches set by configuration bitstream ::—l } e — \
.
XE752
4LUT example gure 4:  16x2 (or 16x1) Edge-Triggered Single-Port RAM Read is same a LUT Function!
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Xilinx 4000 Interconnect Xilinx 4000 Interconnect Details
I N LA
CLB . CLB \1 W | cs L DOUBLE
x‘__l [ _[I__'}-/ Doubles = — 3 }smm.z
PSM PSM Singles | s
' ' " DOUBLE
X i > il Doubles : LONG _TD_ E
e o b T
{ S ! A B N e B
cLB J cLe r cLe o & 7 o
] 11T -----;:-' Tt T NNV
— 17 . P I /X/ i _— e [ T T
PSM PSM mEEEES = %:ﬁﬁ H o s
E H HH E Six Pass Transistors g}.& ,‘ B }FEEDBACK
—] : J ~:\\ RS ERARRRROR inerconnect Poit i Wires are not ideal!
CLB bt . CLB . ¢ CLB 6600
‘ 1 [ [ ‘ [ ‘ : Programmable Switch Matrix (PSM) } ! 1ot _
o ' FHH T
‘q, & ——" s L ogp bl
Figure 28: Single- and Double-Length Lines, with % Y, LS %‘%@% % B %
Programmable Switch Matrices (PSMs) ¢ %‘%
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Gigabit
Serial

Programmable

Termination

Add Bells & Whistles

BRAM

Courtesy of David B. Parlour, ISSCC 2004 Tutorial,
“The Reality and Promise of Reconfigurable Computing in Digital Signal Processing”

The Virtex II CLB (Half Slice Shown)

SHIFTIN cout
SOPIN }4«']7 oney
0
DDual-Port 1 YBMUX
O shift-Reg
G4 >~ A ! M CY1
G3 a3 QLT
G2 > a2 ORAN
ORoM
Gl > A o
o = was GYMUX
WG T waz O .T:)
WG2 > waz2
ez = ey mes
ws Dl
ALTDIG i +
&
MOLCTAND PG:‘OD
e |eros
4
BY
SLICEWE[2:0] SHIFTOUT
TMUXCY,
a 1
1
1
1
CE == :
D Sharad between |
CLK x &y Registers |
SR >

cin

p—————L—> SOPOUT

> VB

panat_01_censot
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Adder Implementation FPGA's
SHIFTI . Ccoulr‘lt
y LUT: A®B A
SOPIN = ORCY x
CIshit-Rea | UG YBMUX | e [ ———Y
o = A owr 1 5
B s Shem ) X . [ESp———
A i b ® . Y=A®B®Cin \\ <~ 1B/HHIH1080 Dot WAG Biecrn
WG3 > ~
WG2 > WG oyg | wT -
WGl wel DSP with 25x18 Masieraam User O Bl KO e Pin {GTX Trarmcemurn)
ATDIG [ 4 multiplier sanim aeem
—a Man DAY daGm 4000
=:> ADS(BN)  E00[30) MOO(30)  WOO(DG)

) FG

SLICEWE[2:0]

DIG

Dedicated carry logic

Shared between|
% &y Registers

1 half-Slice = 1-bit adder
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support

Gigabit ethernet

6.111 Fall 2016

THOEM) 04 040038 TIOEM) B (8
i 10
CLB Dist RAM Block RAM | Multipliers
Virtex 2 8,448 1,056 kbit | 2,592 kbit | 144 (18x18)
Virtex 6 667,000 6,200 kbit 22,752 kbit | 1,344 (25x18)
Spartan 3E | 240 15 kbit 72 kbit 4 (18x18)
Artix-7 A100 | 7,925 1,188 kbit 4,860 kbit | 240 (25x18)
Lecture 9
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Design Flow - Mapping

+ Technology Mapping: Schematic/HDL to Physical Logic units

» Compile functions into basic LUT-based groups (function of
target architecture)

oo

LUT

ol
ol

always @(posedge clock or negedge reset)
begin
if (! reset)
q <= 0;
else
q <= (a&bh&c)||(b&d);
end
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Design Flow - Placement & Route

¢ Placement - assign logic location on a particular device

=l (]
....\E
---.//

m Routing — iterative process to connect CLB inputs/outputs and IOBs. Optimizes critical path
delay — can take hours or days for large, dense designs

LI ]

Iterate placement if timing
not met

|:| I:l I:] Satisfy timing? - Generate
Bitstream to config device

Challenge! Cannot use full chip for reasonable speeds (wires are not ideal).

Typically no more than 50% utilization.
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Example: Verilog to FPGA

module adder64 (
input [63:0] a, b;
output [63:0] sum); —

* Synthesis
e Tech Map
* Place&Route

assign sum =a + b;
endmodule

64-bit Adder Example

Virtex 11 - XC2Vv2000
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How are FPGAs Used?

Logic Emulation

Prototyping
O Ensemble of gate arrays used to emulate a
circuit to be manufactured
O Get more/better/faster debugging done than
with simulation

Reconfigurable hardware

O One hardware block used to implement more
than one function

m Special-purpose computation engines
O Hardware dedicated to solving one problem
(or class of problems)
O Accelerators attached to general-purpose
computers (e.g., in a cell phone!)

FPGA-based Emulator
(courtesy of IKOS)
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Summary

» FPGA provide a flexible platform for implementing digital
computing

* A rich set of macros and I/Os supported (multipliers, block
RAMS, ROMS, high-speed I/0)

* A wide range of applications from prototyping (to validate a
design before ASIC mapping) to high-performance spatial
computing

* Interconnects are a major bottleneck (physical design and
locality are important considerations)
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Test Bench
module sample_tf;
// Inputs module sample(
reg bit_in; input bit_in,
reg [3:0] bus_in; input [3:0] bus_in,
// Outputs output out_bit,
wire out_bit; / output [7:0] out_bus

wire [7:0] out_bus; H
. Verilog . . .
// Instantiate the Unit Under Test (UUT)
sample uut ( endmodule
_bit_in(bit_in),
-bus_in(bus_in),
.out_bit(out_bit),

.out_bus(out_bus)

):

initial begin
// Initialize Inputs
bit_in ;
bus_in = 0;

// Wait 100 ns for global reset to finish
#100;

// Add stimulus here
end

endmodule
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