

Analog Building Blocks

- Sampling theorem
- Undersampling, antialiasing
- FIR digital filters
- Quantization noise, oversampling
- OpAmps, DACs, ADCs

Thu: Lab 4 Checkoff

Digital Representations of Analog Waveforms

Continuous time Continuous values

Discrete time
Discrete values

Discrete Time

Let's use an impulse train to sample a continuous-time function at a regular interval T :
$\delta(x)$ is a narrow impulse at $x=0$, where $\int_{-\infty}^{\infty} f(t) \delta(t-a) d t=f(a)$

Time Domain

$X_{p}(t)$

Reconstruction

Is it possible to reconstruct the original waveform using only the discrete time samples?

Sampling Theorem

Let $x(t)$ be a band-limited signal, ie, $X(j \omega)=0$ for $|\omega|>\omega_{M}$. Then $x(\dagger)$ is uniquely determined by its samples $x(n T), n=0, \pm 1, \pm 2$, ..., if
where

$$
\begin{aligned}
& 2 \omega_{\text {M }} \text { is called the }
\end{aligned}
$$

$$
\omega_{s}=\frac{2 \pi}{T}
$$

Given these samples, we can reconstruct $x(t)$ by generating a periodic impulse train in which successive impulses have amplitudes that are successive sample values, then passing the train through an ideal LPF with gain T and a cutoff frequency greater than ω_{M} and less than $\omega_{s}-\omega_{M}$.

Undersampling \rightarrow Aliasing

If $\omega_{s} \leq 2 \omega_{M}$ there's an overlap

$$
\omega_{M}=5, \omega_{s}=6
$$

of frequencies between one image and its neighbors and we discover that those overlaps introduce additional frequency content in the sampled signal, a phenomenon called aliasing.

There are now tones at 1 (=6-5) and $4(=6-2)$ in addition to the original tones at 2 and 5.

Antialias Filters

If we wish to create samples at some fixed frequency ω_{s}, then to avoid aliasing we need to use a low-pass filter on the original waveform to remove any frequency content $\geq \omega_{s} / 2$.

This is the symbol for a low-pass filter - see the little "x" marks on the middle and high frequecies?

The frequency response of human ears essentially drops to zero above 20kHz. So the "Red Book" standard for CD Audio chose a 44.1 kHz sampling rate, yielding a Nyquist frequency of 22.05 kHz . The 2 kHz of elbow room is needed because practical antialiasing filters have finite slope... fs $=(3$ samples/line $)(490$ lines/frame $)(30$ frames $/ \mathrm{s})=44.1 \mathrm{kHz}$

More info: http://www.cs.columbia.edu/~hgs/audio/44.1.html

Digital Filters

Equation for an N -tap finite impulse response (FIR) filter:

What components are part of the $t_{P D}$ of this circuit? How does $\dagger_{\text {PD }}$ grow as N gets larger?

Filter coefficients

- Use Matlab command: $b=\operatorname{fir} 1\left(\mathrm{~N}, \omega_{c} /\left(\omega_{s} / 2\right)\right)$
- N is the number of taps (we'll get $N+1$ coefficients). Larger N gives sharper roll-off in filter response; usually want N to be as large as reasonably possible.
$-\omega_{c}$ is the cutoff frequency (3 kHz in Lab 5)
- ω_{s} is the sample frequency (48 kHz in Lab 5)
- The second argument to the fir1 command is the cutoff frequency as a fraction of the Nyquist frequency (i.e., half the sample rate).
- By default you get a lowpass filter, but can also ask for a highpass, bandpass, bandstop.
- The b coefficients are real numbers between 0 and 1 . But since we don't want to do floating point arithmetic, we usually scale them by some power of two and then round to integers.
- Since coefficients are scaled by 2^{s}, we'll have to re-scale the answer by dividing by 2^{5}. But this is easy - just get rid of the bottom S bits!

Retiming the FIR circuit

Apply the cut-set retiming transformation repeatedly...

Retimed FIR filter circuit

"Transposed Form" of a FIR filter

What components are part of the $t_{P D}$ of this circuit? How does $\dagger_{\text {PD }}$ grow as N gets larger?

N-tap FIR: less hardware, $N+1$ cycles...

Store samples in a circular buffer: offset points to where latest sample is stored, incremented modulo 2^{M} at each store. offset-i is index of $i^{\text {th }}$ oldest sample.

First: increment offset, then store incoming sample at location it points to. Clear sum.

Then: for i from 0 to N , compute sample[offset-i] * coeff[i] and add to register.

Finally: result in sum

Lab 5A overview

Assignment: build a voice recorder that records and plays back 8-bit PCM data @ 6 KHz

About 11 seconds of speech @ 6KHz

BRAM Operation

AC97: PCM data

PCM = pulse code modulation
Sample waveform at 48 kHz , encode results as an N -bit signed number. For our AC97 chip, $N=$ 18.

FPGA sends output frame to AC97 while AC97 sends input frame to FPGA
ready selects a particular clock_27mhz clock edge when you should store input data from the AC97
(from_ac97_data) and provide new output to the AC97 (to_ac97_data).

Lab 5a* w/ FIR filter

- Since we're down-sampling by a factor of 8 , to avoid aliasing (makes the recording sound "scratchy") we need to pass the incoming samples through a low-pass antialiasing filter to remove audio signal above 3 kHz (Nyquist frequency of a 6 kHz sample rate).

- We need a low-pass reconstruction filter (the same filter as for antialiasing!) when playing back the 6 kHz samples. Actually we'll run it at 48 kHz and achieve a 6 kHz playback rate by feeding it a sample, 7 zeros, the next sample, 7 more zeros, etc.

Discrete Values

If we use N bits to encode the magnitude of one of the discrete-time samples, we can capture 2^{N} possible values.

So we'll divide up the range of possible sample values into 2^{N} intervals and choose the index of the enclosing interval as the encoding for the sample value.

Quantization Error

Note that when we quantize the scaled sample values we may be off by up to $\pm \frac{1}{2}$ step from the true sampled values.

Quantization Noise

Time Domain
$2^{N} \quad$ Max signal

Freq. Domain

NOISE $(j \omega)$

In most cases it's "white noise" with a uniform frequency distribution

SNR: Signal-to-Noise Ratio

$$
S N R=10 \log _{10}\left(\frac{P_{\text {SIGNAL }}}{P_{\text {NOISE }}}\right)=10 \log _{10}\left(\frac{A_{S I G N A L}^{2}}{A_{\text {NOISE }}^{2}}\right)=20 \log _{10}\left(\frac{A_{\text {SIGNAL }}}{A_{\text {NOISE }}}\right)
$$

SNR is measured in decibels (dB). Note that it's a logarithmic scale: if SNR increases by 3 dB the ratio has increased by a factor 2. When applied to audible sounds: the ratio of normal speech levels to the faintest audible sound is $60-70 \mathrm{~dB}$.

Oversampling

To avoid aliasing we know that ω_{s} must be at least $2 \omega_{M}$. Is there any advantage to oversampling, i.e., $\omega_{s}=K \cdot 2 \omega_{m}$?

Suppose we look at the frequency spectrum of quantized samples of a sine wave: $\left(\right.$ sample freq. $=\omega_{s}$)

$$
\begin{gathered}
\operatorname{SNR}_{\omega_{\mathrm{s}}}=10 \log _{10}\left(\frac{P_{\text {SIGNAL }}}{P_{\text {NOISE }}}\right) \\
\end{gathered}
$$

Let's double the sample frequency to $2 \omega_{s}$.

Now let's use a low pass filter to eliminate half the noise! Note that we're not affecting the signal at all...

Oversampling+LPF reduces noise by 3dB/octave

Lab 5b Overview

Assignment: build a digital system to "learn" four Sony Infrared Command (SIRC) and use it to control a Sony television.

- Data sent via 950nm IR modulated at 40 khz .
- Data width: 12, 15 or 20 bit protocol (use 12 bit).
- Start bit: 2400us High: 1200us Low: 600us
- Transmit FSM provided
- Learn/store remote commands

Lab 5b Block Diagram

- IR receiver demodulates signal and provides input into labkit - powered by 5 V from labkit.
- 2N2222 BJT used to power IR transmitter (note bypass caps) - power from labkit
- Command code and channel displayed on hex display

Our Analog Building Block: OpAmp

approximation

Linear Mode	Negative Saturation	Positive Saturation
		$v_{\text {id }}^{+} \quad \stackrel{+}{+V_{C C} \stackrel{+}{V}_{\text {out }}^{+}}$
If $-V_{C C}<V_{\text {out }}<V_{C C}$	$v_{i d}<-e$	$v_{i d}>e$

Very small input range for "open loop" configuration

The Power of (Negative) Feedback

$$
\frac{v_{\text {in }}+v_{\text {id }}}{R_{1}}+\frac{v_{\text {out }}+v_{\text {id }}}{R_{2}}=0 \quad v_{\text {id }}=\frac{v_{\text {out }}}{a} \quad \frac{v_{\text {in }}}{R_{1}}=-\frac{v_{\text {out }}}{a}\left[\frac{1}{R_{1}}+\frac{a}{R_{2}}+\frac{1}{R_{2}}\right]
$$

$$
\frac{v_{\text {out }}}{v_{\text {in }}}=-\frac{R_{2} a}{(1+a) R_{1}+R_{2}} \approx-\frac{R_{2}}{R_{1}}(\text { if } \quad a \gg 1)
$$

- Overall (closed loop) gain does not depend on open loop gain
- Trade gain for robustness
- Easier analysis approach: "virtual short circuit approach"
- $v_{+}=v_{-}=0$ if OpAmp is linear

Basic OpAmp Circuits

OpAmp as a Comparator

Analog Comparator:

Is $\mathrm{V}+>\mathrm{V}$ - ? The Output is a DIGITAL signal

Analog Comparator: Analog to TTL LM 311 Needs Pull-Up

LM311 uses a single supply voltage

Digital to Analog

- Common metrics:
- Conversion rate - DC to $\sim 500 \mathrm{MHz}$ (video)
- \# bits - up to ~24
- Voltage reference source (internal / external; stability)
- Output drive (unipolar / bipolar / current) \& settling time
- Interface - parallel / serial
- Power dissipation
- Common applications:
- Real world control (motors, lights)
- Video signal generation
- Audio / RF "direct digital synthesis"
- Telecommunications (light modulation)
- Scientific \& Medical (ultrasound, ...)

DAC: digital to analog converter

How can we convert a N -bit binary number to a voltage?

R-2R Ladder DAC Architecture

R-2R Ladder achieves large current division ratios with only two resistor values

Non-idealities in Data Conversion

Offset - a constant voltage offset that appears at the output when the digital input is 0

Binary code
Integral Nonlinearity - maximum deviation from the ideal analog output voltage

Binary code

Gain error - deviation of slope from ideal value of 1

Binary code
Differential nonlinearity - the largest increment in analog output for a 1-bit change

Labkit: ADV7125 Triple Out Video DAC

- Three 8-bit DACs
- Single Supply Op.: 3.3 to 5 V
- Internal bandgap voltage ref
- Output: 2-26 mA
- 330 MSPS (million samples per second)
- Simple edge-triggered registerbased interface

Glitching and Thermometer D/A

- Glitching is caused when switching times in a D/A are not synchronized
- Example: Output changes from 011 to 100 - MSB switch is delayed

Binary		Thermometer		
0	0	0	0	0
0	1	0	0	1
1	0	0	1	1
1	1	1	1	1

- Filtering reduces glitch but increases the D/A settling time
- One solution is a thermometer code D/A - requires $2^{N}-1$ switches but no ratioed currents

Successive-Approximation A/D

- D/A converters are typically compact and easier to design. Why not A/D convert using a D/A converter and a comparator?
- DAC generates analog voltage which is compared to the input voltage
- If DAC voltage > input voltage then set that bit; otherwise, reset that bit
- This type of ADC takes a fixed amount of time proportional to the bit length

Example: 3-bit A/D conversion, 2 LSB < $V_{i n}<3$ LSB

Successive-Approximation A/D

Serial conversion takes a time equal to $N\left(t_{D / A}+t_{\text {comp }}\right)$

Flash A/D Converter

- Brute-force A/D conversion
- Simultaneously compare the analog value with every possible reference value
- Fastest method of A/D conversion
- Size scales exponentially with precision
(requires 2^{N} comparators)

Sigma Delta ADC

$h t t p: / / d e s i g n t o o l s . a n a l o g . c o m / d t / s d t u t o r i a l / s d t u t o r i a l . h t m \mid \# i n s t r u c t i o n s$

So, what's the big deal?

- Can be run at high sampling rates, oversampling by, say, 8 or 9 octaves for audio applications; low power implementations
- Feedback path through the integrator changes how the noise is spread across the sampling spectrum.

- Pushing noise power to higher frequencies means more noise is eliminated by LPF: $\mathrm{N}^{\text {th }}$ order $\Sigma \Delta$ SNR $=\left(3+\mathrm{N}^{*} 6\right) \mathrm{dB} /$ octave

Sigma Delta ADC

- A simple ADC:

- Poor Man's ADC:

AD Supply Voltages Consideration

Digital/Analog Grounds

Sensors

- Many sensors have native analog outputs: thermocouples, accelerometers, pressure gauge, ..
- 3-axis accelerometer now used in cell phones, games, iPods, laptops, 6.111 projects

3 Axis 5G accelerometer

Labkit Hardware

- Xilinx FPGA
- Logic analyzer pods
- 4 banks/pods of 16 data lines
- (analyzerN_clock) and a 16-bit data bus (analyzerN_data[15:0]) $N=1,2,3,4$
- VGA video output
- RS-232 Serial IO
- PS/2 keyboard and mouse input
- AC97 audio input/output
- Intel standard for PC audio systems
- codec's ADCs and DACs operate at a 48 kHz sample rate, with 18 bits of precision
- 128 Mbits Flash memory, (2) 512k $\times 36$ ZBT SRAM

Labkit Hardware

Integrated Logic Analyzer ILA

- Allows user to view actual signals in design with a virtual logic analyzer.
- Useful for debugging designs that seem to work in simulation but not implementation.
- B sure change the divider clock from 25_000_000 to 3 or 4 clock cyles. (count == (SW[14] ? 3 : 24_999_999)) count <= 0;
- To view the signals, additional signals are place and routed but used internally to display the waveforms.

```
(* mark_debug = "true" *) wire [2:0] state; // virtual test probes
(* mark_debug = "true" *) wire driver_door; // virtual test
    // more Verilog, etc...
```


Run Synthesized Design

Setup Debug

Save Constraints

Implementation

Load the bit file to the FPGA．Undock ILA window ． Set up the trigger for the ILA．

Set Trigger

Select and drag trigger $(1,2)$

Set trigger value (3)

Select trigger position (4)

Run (5)

Waveform Display

Upload Lab 4 Verilog

- Submit by Monday
- Grading
- Proper use of blocking and non-blocking assignments
- Readable Code (reformatted) with comments and consistent indenting [use emacs or VIM]
- Use of default in case statement
- Use of parameter statements for symbolic name and constants (state $==5$ vs state==DATA_READY)
- Parameterized modules when appropriate
- Readable logical flow, properly formatted (see "Verilog Editors")
- No long nested if statements.
- Score 1 to 3 (3 perfect); 1/2 point off for each occurrence.

